We discuss data-driven morphological segmentation, in which word forms are segmented into morphs, that is the surface forms of morphemes. We extend a recent segmentation approach based on conditional random fields from purely supervised to semi-supervised learning by exploiting available unsupervised segmentation techniques. We integrate the unsupervised techniques into the conditional random field model via feature set augmentation.Experiments on three diverse languages show that this straightforward semi-supervised extension greatly improves the segmentation accuracy of the purely supervised CRFs in a computationally efficient manner.
We present a corpus of Finnish news articles with a manually prepared named entity annotation. The corpus consists of 953 articles (193,742 word tokens) with six named entity classes (organization, location, person, product, event, and date). The articles are extracted from the archives of Digitoday, a Finnish online technology news source. The corpus is available for research purposes. We present baseline experiments on the corpus using a rule-based and two deep learning systems on two, in-domain and out-of-domain, test sets.
This paper describes FinnPos, an open-source morphological tagging and lemmatization toolkit for Finnish. The morphological tagging model is based on the averaged structured perceptron classifier. Given training data, new taggers are estimated in a computationally efficient manner using a combination of beam search and model cascade. The lemmatization is performed employing a combination of a rule-based morphological analyzer, OMorFi, and a data-driven lemmatization model. The toolkit is readily applicable for tagging and lemmatization of running text with models learned from the recently published Finnish Turku Dependency Treebank and FinnTreeBank. Empirical evaluation on these corpora shows that FinnPos performs favorably compared to reference systems in terms of tagging and lemmatization accuracy. In addition, we demonstrate that our system is highly competitive with regard to computational efficiency of learning new models and assigning analyses to novel sentences.
This article presents a comparative study of a subfield of morphology learning referred to as minimally supervised morphological segmentation. In morphological segmentation, word forms are segmented into morphs, the surface forms of morphemes. In the minimally supervised data-driven learning setting, segmentation models are learned from a small number of manually annotated word forms and a large set of unannotated word forms. In addition to providing a literature survey on published methods, we present an in-depth empirical comparison on three diverse model families, including a detailed error analysis. Based on the literature survey, we conclude that the existing methodology contains substantial work on generative morph lexicon-based approaches and methods based on discriminative boundary detection. As for which approach has been more successful, both the previous work and the empirical evaluation presented here strongly imply that the current state of the art is yielded by the discriminative boundary detection methodology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.