Aromatase, a rate-limiting enzyme catalyzing the conversion of androgen to estrogen, is overexpressed in human breast cancer tissue. Aromatase inhibitors (AIs) have been used for the treatment of estrogen-dependent breast cancer in post-menopausal women by blocking the biosynthesis of estrogen. The undesirable side effects in current AIs have called for continued pursuit for novel candidates with aromatase inhibitory properties. This study explores the chemical space of all known AIs as a function of their physicochemical properties by means of univariate (i.e., statistical and histogram analysis) and multivariate (i.e., decision tree and principal component analysis) approaches in order to understand the origins of aromatase inhibitory activity. Such a non-redundant set of AIs spans a total of 973 compounds encompassing both steroidal and non-steroidal inhibitors. Substructure analysis of the molecular fragments provided pertinent information on the structural features important for ligands providing high and low aromatase inhibition. Analyses were performed on data sets stratified according to their structural scaffolds (i.e., steroids and non-steroids) and bioactivities (i.e., actives and inactives). These analyses have uncover a set of rules characteristic to active and inactive AIs as well as revealing the constituents giving rise to potent aromatase inhibition.
Aromatase is a member of the cytochrome P450 family responsible for catalyzing the rate-limiting conversion of androgens to estrogens. In the pursuit of robust aromatase inhibitors, quantitative structure-activity relationship (QSAR) and classification structure-activity relationship (CSAR) studies were performed on a non-redundant set of 63 flavonoids using multiple linear regression, artificial neural network, support vector machine and decision tree approaches. Easy-to-interpret descriptors providing comprehensive coverage on general characteristics of molecules (i.e., molecular size, flexibility, polarity, solubility, charge and electronic properties) were employed to describe the unique physicochemical properties of the investigated flavonoids. QSAR models provided good predictive performance as observed from their statistical parameters with Q values in the range of 0.8014 and 0.9870 for the cross-validation set and Q values in the range of 0.8966 and 0.9943 for the external test set. Furthermore, CSAR models developed with the J48 algorithm are able to accurately classify flavonoids as active and inactive as observed from the percentage of correctly classified instances in the range of 84.6 % and 100 %. The study presented herein represents the first large-scale QSAR study of aromatase inhibition on a large set of flavonoids. Such investigations provide an important insight on the origins of aromatase inhibitory properties of flavonoids as breast cancer therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.