Streptococcus pneumoniae is a devastating global pathogen. Prevalent in sub-Saharan Africa, pneumococcal serotype 1 is atypical in that it is rarely found as a nasopharyngeal coloniser, yet is described as one of the most common causes of invasive pneumococcal disease. Clonal sequence type (ST)-306 and ST615 are representative of the two major serotype 1 lineages A and C, respectively. Here we investigated the virulence properties and haemolytic activities of these 2 clonal types using in vivo mouse models and in vitro assays. A lethal dose of ST615 administered intranasally to mice led to the rapid onset of disease symptoms and resulted in 90% mortality. In contrast, mice exposed to the same infection dose of ST306 or a pneumolysin (Ply)-deficient ST615 failed to develop any disease symptoms. Interestingly, the 2 strains did not differ in their ability to bind the immune complement or to undergo neutrophil-mediated phagocytosis. Upon comparative genomic analysis, we found higher within-ST sequence diversity in ST615 compared with ST306 and determined that ZmpA, ZmpD proteins, and IgA protease, were uniquely found in ST615. Using cell fractionation and cell contact-dependent assay, we made the unexpected finding that ST615 harbours the expression of two haemolytic variants of Ply: a cell-wall restricted fully haemolytic Ply, and a cytosolic pool of Ply void of any detectable haemolytic activity. This is the first time such a phenomenon has been described. We discuss the biological significance of our observation in relation to the aptitude of the pneumococcus for sustaining its human reservoir.
Using two-photon imaging, we show that pneumococci translocate from the nasopharynx to the dorsal meninges of a mouse in the absence of any bacteria found in blood or cerebrospinal fluid. Strikingly, this takes place within minutes of inhaled delivery of pneumococci, suggesting the existence of an inward flow of fluid connecting the nasopharynx to the meninges, rather than a receptor-mediated mechanism.
The entry routes and translocation mechanisms of bacterial pathogens into the central nervous system remain obscure. We report here that Streptococcus pneumoniae (Sp) or polystyrene microspheres, applied to the nose of a mouse, appeared in the meninges of the dorsal cortex within minutes. Recovery of viable bacteria from dissected tissue and fluorescence microscopy showed that up to at least 72h, Sp and microspheres were predominantly in the outer of the two meninges, the pachymeninx. No Sp were found in blood or cerebrospinal fluid. Evidence that this was not an artifact of the method of administration is that in mice infected by horizontal transmission, Sp were also predominantly in the meninges and absent from blood. Intravital imaging through the skull, and flow cytometry showed recruitment and activation of LysM+ cells in the dorsal pachymeninx at 5h and 10h following intranasal infection. Imaging of the cribriform plate suggested that both Sp and microspheres entered through its foramina via an inward flow of fluid connecting the nose to the pachymeninx. Our findings bring further insight into the invasion mechanisms of bacterial pathogens such as Sp into the central nervous system, but are also pertinent to the delivery of drugs to the brain, and the entry of air-borne particles into the cranium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.