Fetal growth restriction (FGR) is a common complication of pregnancy, resulting in a fetus that fails to reach its genetically determined growth potential. Whilst the fetal cardiovascular response to acute hypoxia is well established, the fetal defence to chronic hypoxia is not well understood due to experiment constraints. Growth restriction results primarily from reduced oxygen and nutrient supply to the developing fetus, resulting in chronic hypoxia. The fetus adapts to chronic hypoxia by redistributing cardiac output via brain sparing in an attempt to preserve function in the developing brain. This review highlights the impact of brain sparing on the developing fetal cardiovascular and cerebrovascular systems, as well as emerging long-term effects in offspring that were growth restricted at birth. Here, we explore the pathogenesis associated with brain sparing within the cerebrovascular system. An increased understanding of the mechanistic pathways will be critical to preventing neuropathological outcomes, including motor dysfunction such as cerebral palsy, or behaviour dysfunctions including autism and attention-deficit/hyperactivity disorder (ADHD).
Antenatal brain development during the final trimester of human pregnancy is a time when mature neurons become increasingly complex in morphology, through axonal and dendritic outgrowth, dendritic branching, and synaptogenesis, together with myelin production. Characterizing neuronal morphological development over time is of interest to developmental neuroscience and provides the framework to measure grey matter pathology in pregnancy compromise. Neuronal microstructure can be assessed with Golgi staining, which selectively stains a small percentage (1-3%) of neurons and their entire dendritic arbor. Advanced imaging processing and analysis tools can then be employed to quantitate neuronal cytoarchitecture. Traditional Golgi staining protocols have been optimized and commercial kits are readily available offering improved speed and sensitivity of Golgi staining to produce consistent results. Golgi stained tissue is then visualized under light microscopy and image analysis may be completed with several software programs for morphological analysis of neurons, including freeware and commercial products. Each program requires optimization, whether semi-automated or automated, requiring different levels of investigator intervention and interpretation, which is a critical consideration for unbiased analysis. Detailed protocols for fetal ovine brain tissue are lacking and therefore, we provide a step-by-step workflow of computer software analysis for morphometric quantification of Golgi-stained neurons. Here, we utilized the commonly applied FD Rapid GolgiStain kit (FD NeuroTechnologies) on ovine fetal brains collected at 127 days (0.85) gestational age for the analysis of CA1 pyramidal neurons in the hippocampus. We describe the step-by-step protocol to retrieve neuronal morphometrics using Imaris imaging software to provide quantification of apical and basal dendrites for measures of dendrite length (μm), branch number, branch order and Sholl analysis (intersections over radius). We also detail software add-ons for data retrieval of dendritic spines including the number of spines, spine density and spine classification, which are critical indicators of synaptic function. The assessment of neuronal morphology in the developing brain using Rapid-Golgi and Imaris software is labour-intensive, particularly during the optimization period. The methodology described in this step-by-step description is novel, detailed, and aims to provide a reproducible, working protocol to quantify neuronal cytoarchitecture with simple descriptions that will save time for the next users of these commonly used techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.