Kemiskinan merupakan salah satu permasalahan global yang terjadi di semua negara berkembang termasuk negara Indonesia. Pengentasan kemiskinanan menjadi prioritas utama dalam tujuan pembangunan berkelanjutan atau Sustainable Development Goals (SDGs), dimana pengentasan kemiskinan menjadi tujuan pertama yang ingin dicapai. Kemiskinana juga menjadi salahsatu permasalahan yang menjadi isu salahsatu isu strategis RPJMD tahun 2018-2023 yang menjadi pusat perhatian pemerintah khususnya di Provinsi Jawa Barat yang merupakan provinsi dengan jumlah penduduk terbanyak di Indonesia. Pada penelitian ini akan dilakukan analisis faktor-faktor yang mempengaruhi kemiskinan di Provinsi Jawa Barat. Data kemiskinan tiap-tiap kabupaten/kota memiliki tingkat yang berbeda -beda, sehingga terdapat kemungkinan adanya efek spasial dalam data. Maka pemodelan harus mengakomodasi aspek spasial kemudian terbatasnya variabel yang dilibatkan karena keterbatasan data tentunya menimbulkan oomited variabel atau varaiebel yang relevan namun tidak ada dalam model maka digunakan pendekatan fixed effect model dalam mengatasi masalah tersebut. Sehingga pemodelan yang digunakan adalah Spatial Autoregressive Fixed Effact model ( SAR-FEM). Hasil penelitian ini didapatkan bahwa Variabel Tingkat pengangguran terbuka, Indkes pembangunan Manusia dan persentase penduduk berpengaruh signifikan terhadap Tingginya tingkat kemiskina di Provinsi Jawa Barat. Model spatial lag fixed effect yang terbentuk dapat menjelaskan besarnya keragaman dari Tingkat Kemiskinan yang dapat dijelaskan oleh variabel prediktor sebesar 98.88% sedangkan 1.116% sisanya dijelaskan oleh variabel lain yang tidak dimasukkan kedalam model.
Inflasi merupakan suatu kenaikan harga barang atau jasa secara menyeluruh dan berkelanjutan, yang menyebabkan menurunya nilai tukar rupiah dan berpengaruh terhadap daya beli bahan baku atau industri di mana bahan tersebut diimpor. Hal ini tentunya dapat menjadi ancaman dan ditandai dengan fenomena keuangan yang menggambarkan pertumbuhan keuangan yang berlebihan dan tidak stabil. Usaha yang bisa diperoleh dalam menangani masalah tersebut adalah prakiraan inflasi di Indonesia. Penelitian ini bertujuan untuk mendapatkan model prakiraan inflasi bulanan di Indonesia dan mengetahui kapan harus menaikkan prakiraan tersebut berupa upaya adaptasi untuk menstabilkan inflasi. Data yang dipergunakan merupakan data inflasi bulanan periode Januari 2003 sampai November 2020. Metode yang dipergunakan dalam penelitian ini yaitu model SARIMA yang merupakan evolusi dari model ARIMA yang dapat disesuaikan dengan model data inflasi musiman. Berdasarkan hasil pengolahan, didapatkan model terbaik dengan nilai AIC terendah, SARIMA (1,0,1)(1,1,1) 12 dengan nilai sebesar MAPE 5.19%. Hasil prediksi menunjukkan bahwa dalam beberapa bulan kedepan akan terjadi peningkatan tingkat inflasi sesuai model yang telah dibuat. Berdasarkan hal tersebut, penelitian ini diharapkan menjadi acuan bagi pemerintah dalam menentukan langkah antisipasi terjadinya permasalahan pada bidang perekonomian.
Permasalahan yang ada di setiap negara khususnya negara berkembang termasuk Indonesia adalah kemiskinan. Program dalam mengentaskan kemiskinan merupakan pokok tujuan dari Sustainable Development Goals (SDGs). Jawa Barat yang merupakan salah satu provinsi dengan jumlah penduduk miskin terbanyak perlu mengatasi permasalah tersebut seperti yang tertuang dalam RPJMD. Dalam hal ini pemerintah seringkali menentukan pembangunan dengan memprioritaskan pembangunan ekonomi pada daerah perkotaan ataupun pusat perekonomian yang mengakibatkan daerah lainnya tertinggal dan kemiskinan menjadi tidak merata. Hal tersebut tentunya memperlihatkan faktor yang berhubungan dengan ekonomi diduga terdapat aspek spasial sehingga harus menggunakan spasial lag variabel prediktor sebagai prediktor variabel, selain itu kemiskinan merupakan masalah multidimensial sehingga banyak faktor yang mempengaruhi tingkat kemiskinan tidak dimasukkan ke dalam pemodelan. Variabel prediktor yang tidak dimasukkan ke dalam pemodelan dinamakan omitted variables. Berdasarkan permasalahan itu, dalam mengetahui faktor-faktor kemiskinan di Jawa Barat diperlukan suatu pendekatan yang mampu mengakomodasi lag spasial prediktor variabel dan error model yang berkorelasi spasial, serta mampu mengatasi bias taksiran akibat omitted variables. Maka dalam penelitian ini dilakukan pendekatan model regresi spasial Durbin Error Model. Pembobot spasial yang digunakan yaitu queen contiguity. Berdasarkan penelitian ini didapatkan bahwa variabel Indeks Pembanguna Manusia (IPM) dan persentase penduduk berpengaruh terhadap tingkat kemiskinan di Provinisi Jawa Barat, dengan nilai R-Square sebesar 98%. Maka hasil tersebut diharapkan dapat menjadi pertimbangan bagi pemerintah Jawa Barat untuk menanggulangi masalah kemiskinan dalam upaya mencapai tujuan pertama SDGs yaitu tanpa kemiskinan.
Coronavirus Disease 2019 (COVID-19) or commonly called the Corona virus is a new virus that was first confirmed to appear on December 31, 2019. In Indonesia, all of its 34 provinces have confirmed positive cases of the virus. In this study, clustering of the spread of COVID-19 was carried out as an input for the government for a better, focused handling of COVID-19 for all provinces in Indonesia. Clustering is carried out based on the parameters of total positive cases, total cases of death, Recovery Index, Case Fatality Ratio, tracking and isolation ratio, total cases of people under surveillance completed, cumulative total cases of patients under surveillance, population density, and poverty line. In this study, K-means method was used to cluster data. Based on the Elbow test, the recommended number of clusters is three, which can be translated as high, medium, and low risk clusters. The results of this study are expected to be a comparison to updated data, as well as consideration for the government's better performance in handling COVID-19 more effectively and efficiently. Keywords: COVID-19, clustering, K-means
Inflasi telah menjadi bagian penting masalah perekonomian pada setiap negara, termasuk Indonesia. Kestabilan inflasi merupakan suatu hal yang penting karena inflasi yang rendah dan stabil merupakan prasyarat bagi pertumbuhan ekonomi sehingga memberikan manfaat bagi peningkatan kesejahteraan masyarakat. Penelitian ini menggunakan metode ARCH/GARCH dalam memodelkan laju inflasi periode bulanan di Indonesia selama periode Januari 1979 sampai April 2021. Residual white noise heteroscedasticity menunjukkan bahwa data memiliki sifat heteroskedastisitas. Untuk mengatasi sifat heteroskedastisitas pada data laju inflasi bulanan digunakan pemodelan dengan metode ARCH/GARCH. Model yang paling sesuai untuk melakukan prediksi laju inflasi bulanan adalah model GARCH (0, 1) yang dapat dilihat dari nilai Akaike Information Criteria terkecil baik pada AIC konstan maupun tidak konstan yaitu sebesar 1366,07 dan 1364,04. Berdasarkan nilai AIC terkecil maka mengindikasikan bahwa model yang diperoleh sudah cocok untuk prediksi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.