Catalyst waste from the residue fluid catalytic cracking (RFCC) plant process can still be utilized to catalyze the catalytic cracking of palm oil to fuels. However, we should regenerate the active sites of the catalyst waste. This paper focuses on enhancement of Brønsted and Lewis acid sites on the spent RFCC catalyst waste through various acid treatments in order to regenerate its catalyst active sites. In order to regenerate the Brønsted and the Lewis acid sites as active sites in the palm oil catalytic cracking, the spent RFCC catalyst was treated by citric acid, sulfuric acid, and mixture of both acids. The catalysts were characterized by X-ray fluorescence, X-ray diffraction, Brunauer–Emmett–Teller-Barrett–Joyner–Halenda, and pyridine-FTIR analysis. The modified catalyst performance was tested over a fixed bed reactor for the catalytic cracking process of palm oil to liquid fuels. It was found that the acid treatment on the spent RFCC catalyst can increase surface area, pore volume, and Brønsted to Lewis acid site ratio of catalysts. The Brønsted acid sites of the spent RFCC catalyst strongly increase by the treatment using sulfuric acid, which is because of the proton transfer from acid to catalyst and because of the formation of sulfate groups (HOSO3−) in the catalysts. It was found that the Brønsted acid site leads to the formation of long-chain hydrocarbon, while the Lewis acid site pronounces the formation of short-chain hydrocarbon and coke. Moreover, the total acidity and the Lewis acid site amount on the catalyst have roles in the formation of hydrocarbon fraction in the liquid product.
Biofuels can be produced through a conventional catalytic cracking system and/or a hybrid catalyticplasma cracking system. This paper was focused on studying effect of Na + ion exchange to HY-Zeolite catalyst on catalyst performance to convert palm oil into biofuels over a conventional continuous fixed bed catalytic cracking reactor and comparing the catalytic cracking performance when carried out in a continuous hybrid catalytic-plasma reactor. The catalysts were characterized by X-ray Diffraction (XRD) and Bruneuer-Emmet-Teller (BET) surface area methods. The biofuels product were analyzed using Gas Chromatography-Mass Spectrometry (GC-MS) to determine the hydrocarbons composition of biofuels product. From the results, ion exchange process of Na + into HY-Zeolite catalyst decreases the catalyst activity due to decreasing the number of active sites caused by blocking of Na + ion. The selectivity to gasoline ranges achieved 34.25% with 99.11% total conversion when using HY catalyst over conventional continuous fixed bed reactor system. Unfortunately, the selectivity to gasoline ranges decreased to 13.96% and the total conversion decrease slightly to 98.06% when using NaY-Zeolite catalyst. As comparison when the cracking reaction was carried out in a hybrid catalytic-plasma reactor using a spent residual catalytic cracking (RCC) catalyst, the high energetics electron from plasma can improve the reactor performance, where the conversion and yield were increased and the selectivity to lower ranges of hydrocarbons was increased. However, the last results were potential to be intensively studied with respect to relation between reactor temperature and plasma-assisted catalytic reactor parameters.
The increase in energy demand led to the challenging of alternative fuel development. Biofuels from palm oil through catalytic cracking appear as a promising alternative fuel. In this study, biofuel was produced from palm oil through catalytic cracking using the modified HY zeolite catalysts. The Ni and Co metals were impregnated on the HY catalyst through the wet-impregnation method. The catalysts were characterized using X-ray fluorescence, X-ray diffraction, Brunauer–Emmett–Teller (BET), Pyridine-probed Fourier-transform infrared (FTIR) spectroscopy, and Scanning Electron Microscopy (SEM) methods. The biofuels product obtained was analyzed using a gas chromatography-mass spectrometry (GC-MS) method to determine its composition. The metal impregnation on the HY catalyst could modify the acid site composition (Lewis and Brønsted acid sites), which had significant roles in the palm oil cracking to biofuels. Ni impregnation on HY zeolite led to the high cracking activity, while the Co impregnation led to the high deoxygenation activity. Interestingly, the co-impregnation of Ni and Co on HY catalyst could increase the catalyst activity in cracking and deoxygenation reactions. The yield of biofuels could be increased from 37.32% to 40.00% by using the modified HY catalyst. Furthermore, the selectivity of gasoline could be achieved up to 11.79%. The Ni and Co metals impregnation on HY zeolite has a promising result on both the cracking and deoxygenation process of palm oil to biofuels due to the role of each metal. This finding is valuable for further catalyst development, especially on bifunctional catalyst development for palm oil conversion to biofuels.
Recently, the increase in fuel oil demand was not supported by petroleum production due to the low productivity of old wells. Furthermore, an appropriate technology, such as Enhanced Oil Recovery (EOR) technology, is needed to maximize the productivity of the old well. Therefore, the purpose of this study was to synthesize a polymeric surfactant for the EOR process from sodium lignosulfonate (SLS) and polyethylene glycol (PEG) in various SLS to PEG ratios, namely 1:1 (PS1), 1:0.8 (PS2), and 1:0.5 (PS3). The surfactants were characterized using several methods, such as Fourier Transform-Infrared spectroscopy (FT-IR), compatibility, stability, viscosity, and phase behavior tests. The performance of the surfactants for the EOR process in different brine solution concentrations (16,000 ppm and 20,000 ppm) was also studied. The result showed that the introduction of the PEG molecule to the surfactant had been successfully conducted as FT-IR analysis confirmed. The surfactant's hydrophilicity increased with the introduction of PEG due to the increase of the ether group. A Winsor Type I or lower phase microemulsion was formed due to the high hydrophilicity. The highest oil yield (79 %) was obtained by PS1 surfactant, which has the highest PEG dosage, in a brine solution of 1,600 ppm. Therefore, it was concluded that the introduction of PEG could increase the hydrophilicity, viscosity, and EOR performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.