Partially concrete encased steel (PE) beams are composite steel beams and concrete elements that present several advantages, such as higher fire resistant, higher flexural capacity, and higher lateral torsional buckling resistant compared to bare steel beams. This paper reports an experimental study of eight PE beams under cyclic loading. The effectiveness of intermediate stiffeners, such as midspan stiffener and plastic hinge zone stiffener, in enhancing composite action and ductility of the PE beams was studied. The ductility performance of PE beams using strengthened beam-to-column connection and weakened beam-to-column connection was also investigated. The test results show that the plastic hinge zone stiffener performed well and has the potential to replace shear connectors. Strengthened and weakened beam-to-column connections can be implemented in PE beams to enhance the ductility of the PE beams; with the details of both strengthened and weakened beam-to-column connections determined by bare steel shape instead of the whole section. In addition, the suggestions to prevent premature failure of weakened beam-to-column connection were provide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.