Background: There is a recognized need for an improved diagnostic test to assess post-chemotherapeutic treatment outcome in visceral leishmaniasis (VL) and to diagnose post kala-azar dermal leishmaniasis (PKDL). We previously demonstrated by ELISA and a prototype novel rapid diagnostic test (RDT), that high anti-Leishmania IgG1 is associated with post-treatment relapse versus cure in VL.Methodology: Here, we further evaluate this novel, low-cost RDT, named VL Sero K-SeT, and ELISA for monitoring IgG1 levels in VL patients after treatment. IgG1 levels against L. donovani lysate were determined. We applied these assays to Indian sera from cured VL at 6 months post treatment as well as to relapse and PKDL patients. Sudanese sera from pre- and post-treatment and relapse were also tested.Results: Of 104 paired Indian sera taken before and after treatment for VL, when deemed clinically cured, 81 (77.9%) were positive by VL Sero K-SeT before treatment; by 6 months, 68 of these 81 (84.0%) had a negative or reduced RDT test line intensity. ELISAs differed in positivity rate between pre- and post-treatment (p = 0.0162). Twenty eight of 33 (84.8%) Indian samples taken at diagnosis of relapse were RDT positive. A comparison of Indian VL Sero K-SeT data from patients deemed cured and relapsed confirmed that there was a significant difference (p < 0.0001) in positivity rate for the two groups using this RDT. Ten of 17 (58.8%) Sudanese sera went from positive to negative or decreased VL Sero K-SeT at the end of 11–30 days of treatment. Forty nine of 63 (77.8%) PKDL samples from India were positive by VL Sero K-SeT.Conclusion: We have further shown the relevance of IgG1 in determining clinical status in VL patients. A positive VL Sero K-SeT may also be helpful in supporting diagnosis of PKDL. With further refinement, such as the use of specific antigens, the VL Sero K-SeT and/or IgG1 ELISA may be adjuncts to current VL control programmes.
Background Visceral leishmaniasis (VL), caused by the Leishmania donovani complex, is a fatal, neglected tropical disease that is targeted for elimination in India, Nepal, and Bangladesh. Improved diagnostic tests are required for early case detection and for monitoring the outcomes of treatments. Previous investigations using Leishmania lysate antigen demonstrated that the immunoglobulin (Ig) G1 response is a potential indicator of a patient’s clinical status after chemotherapy. Methods IgG1 or IgG enzyme-linked immunosorbent assays (ELISAs) with rK39 or lysate antigens and novel IgG1 rK39 rapid diagnostic tests (RDTs) were assessed with Indian VL serum samples from the following clinical groups: paired pre- and postchemotherapy (deemed cured); relapsed; other infectious diseases; and endemic, healthy controls. Results With paired pre- and post-treatment samples (n = 37 pairs), ELISAs with rK39- and IgG1-specific conjugates gave a far more discriminative decrease in post-treatment antibody responses when compared to IgG (P < .0001). Novel IgG1 rK39 RDTs provided strong evidence for decreased IgG1 responses in patients who had successful treatment (P < .0001). Furthermore, both IgG1 rK39 RDTs (n = 38) and ELISAs showed a highly significant difference in test outcomes between cured patients and those who relapsed (n = 23; P < .0001). RDTs were more sensitive than corresponding ELISAs. Conclusions We present strong evidence for the use of IgG1 in monitoring treatment outcomes in VL, and the first use of an IgG1-based RDT using the rK39 antigen for the discrimination of post-treatment cure versus relapse in VL. Such an RDT may have a significant role in monitoring patients and in targeted control and elimination of this devastating disease.
Background The search for diagnostic biomarkers has been profiting from a growing number of high quality sequenced genomes and freely available bioinformatic tools. These can be combined with wet lab experiments for a rational search. Improved, point-of-care diagnostic tests for visceral leishmaniasis (VL), early case detection and surveillance are required. Previous investigations demonstrated the potential of IgG1 as a biomarker for monitoring clinical status in rapid diagnostic tests (RDTs), although using a crude lysate antigen (CLA) as capturing antigen. Replacing the CLA by specific antigens would lead to more robust RDTs. Methodology Immunoblots revealed L. donovani protein bands detected by IgG1 from VL patients. Upon confident identification of these antigens by mass spectrometry (MS), we searched for evidence of constitutive protein expression and presence of antigenic domains or high accessibility to B-cells. Selected candidates had their linear epitopes mapped with in silico algorithms. Multiple high-scoring predicted epitopes from the shortlisted proteins were screened in peptide arrays. The most promising candidate was tested in RDT prototypes using VL and nonendemic healthy control (NEHC) patient sera. Results Over 90% of the proteins identified from the immunoblots did not satisfy the selection criteria and were excluded from the downstream epitope mapping. Screening of predicted epitope peptides from the shortlisted proteins identified the most reactive, for which the sensitivity for IgG1 was 84% (95% CI 60—97%) with Sudanese VL sera on RDT prototypes. None of the sera from NEHCs were positive. Conclusion We employed in silico searches to reduce drastically the output of wet lab experiments, focusing on promising candidates containing selected protein features. By predicting epitopes in silico we screened a large number of peptides using arrays, identifying the most promising one, for which IgG1 sensitivity and specificity, with limited sample size, supported this proof of concept strategy for diagnostics discovery, which can be applied to the development of more robust IgG1 RDTs for monitoring clinical status in VL.
Soil-transmitted helminths (STH) are endemic and widespread across Sub-Saharan Africa. A community wide soil-transmitted helminth (STH) prevalence survey was performed on the island of Bubaque in Guinea-Bissau using both Kato-katz microscopy and qPCR methodology. Predictors of infection and morbidity indicators were identified using multivariable logistic regression, and diagnostic methods were compared using k statistics. Among 396 participants, prevalence of STH by microscopy was 23.2%, hookworm was the only species identified by this method and the mean infection intensity was 312 eggs per gram. qPCR analysis revealed an overall prevalence of any STH infection of 47.3%, with the majority A. duodenale (32.3%), followed by N. americanus (15.01%) and S. stercoralis (13.2%). A. lumbricoides, and T. trichiura infections were negligible, with a prevalence of 0.25% each. Agreement between diagnostic tests was k = 0.22, interpreted as fair agreement, and infection intensity measured by both methods was only minimally correlated (Rs = -0.03). STH infection overall was more common in females and adults aged 31–40. STH infection was associated with open defaecation, low socio-economic status and further distance to a water-source. The prevalence of anaemia (defined as a binary outcome by the WHO standards for age and sex) was 69.1%, and 44.2% of children were malnourished according to WHO child growth standards. Hookworm infection intensity by faecal egg count showed no statistically significant association with age (Rs 0.06) but S. Stercoralis infection intensity by qPCR cycle threshold was higher in pre-school aged children (Rs = 0.30, p-value 0.03) There was no statistically significant association between STH infection and anaemia (OR 1.0 p = 0.8), stunting (OR 1.9, p-value 0.5) and wasting (OR 2.0, p-value 0.2) in children. This study reveals a persistent reservoir of STH infection across the community, with high rates of anaemia and malnutrition, despite high-coverage of mebendazole mass-drug administration in pre-school children. This reflects the need for a new strategy to soil-transmitted helminth control, to reduce infections and ultimately eliminate transmission.
Background: Stimulated by the increasing recent use of 'K' or 'rK' nomenclature for antigens reported for visceral leishmaniasis (VL) diagnostic serology, we wished to give a chronological synopsis of their reporting and the potentially confusing terminology. Methods: The literature was examined for 'K' or 'rK' terminology for VL diagnostic antigens, with emphasis on the original publications in which terms were first used. Results: A chronological account of the first use of these 'K' and 'rK' nomenclatures was compiled. Since the original use of this terminology in 1993 in the name rK39 for a Leishmania antigen fragment, we found nine subsequent instances where 'K' or 'rK' have been used to maintain consistency with this nomenclature. We also found instances where there were ambiguities regarding reported strain name, origin and GenBank accession numbers. Conclusions: We have documented here the uses in the literature of the 'K' or 'rK' prefix for VL diagnostic antigen nomenclature. We suggest that, to avoid confusion, the use of such nomenclature for future antigens should either provide the logical derivation of the term or indicate that the designation is entirely empirical.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.