Bacterial antibiotic resistance is rapidly growing globally and poses a severe health threat as the number of multidrug resistant (MDR) and extensively drug-resistant (XDR) bacteria increases. The observed resistance is partially due to natural evolution and to a large extent is attributed to antibiotic misuse and overuse. As the rate of antibiotic resistance increases, it is crucial to develop new drugs to address the emergence of MDR and XDR pathogens. A variety of strategies are employed to address issues pertaining to bacterial antibiotic resistance and these strategies include: (1) the anti-virulence approach, which ultimately targets virulence factors instead of killing the bacterium, (2) employing antimicrobial peptides that target key proteins for bacterial survival and, (3) phage therapy, which uses bacteriophages to treat infectious diseases. In this review, we take a renewed look at a group of ESKAPE pathogens which are known to cause nosocomial infections and are able to escape the bactericidal actions of antibiotics by reducing the efficacy of several known antibiotics. We discuss previously observed escape mechanisms and new possible therapeutic measures to combat these pathogens and further suggest caseinolytic proteins (Clp) as possible therapeutic targets to combat ESKAPE pathogens. These proteins have displayed unmatched significance in bacterial growth, viability and virulence upon chronic infection and under stressful conditions. Furthermore, several studies have showed promising results with targeting Clp proteins in bacterial species, such as Mycobacterium tuberculosis, Staphylococcus aureus and Bacillus subtilis.
Caseinolytic proteins (Clp), which are present in both prokaryotes and eukaryotes, play a major role in cell protein quality control and survival of bacteria in harsh environmental conditions. Recently, a member of this protein family, ClpK was identified in a pathogenic strain of Klebsiella pneumoniae which was responsible for nosocomial infections. ClpK is linked to the thermal stress survival of this pathogen. The genome wide analysis of Clp proteins in Klebsiella spp. indicates that ClpK is present in only 34% of the investigated strains. This suggests that the uptake of the clpk gene is selective and may only be taken up by a pathogen that needs to survive harsh environmental conditions. In silico analyses and molecular dynamic simulations show that ClpK is mainly α-helical and is highly dynamic. ClpK was successfully expressed and purified to homogeneity using affinity and anion exchange chromatography. Biophysical characterization of ClpK showed that it is predominantly alpha-helical, and this is in agreement with in silico analysis of the protein structure. Furthermore, the purified protein is biologically active and hydrolyses ATP in a concentration- dependent manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.