The rotary engine (RE) is a potential power plant for unmanned aerial vehicles (UAVs) and automobiles because of its structural and design merits. However, it has some serious drawbacks, such as frequent maintenance requirements and excessive fuel consumption. This review paper presents the current status of hydrogen-fueled rotary engine (HRE) technology and identifies the existing research and development gaps in combustion efficiency and performance of this engine that might benefit transportation sector. Focusing primarily on the research from past ten years, the crucial challenges encountered in hydrogen-powered rotary engines have been reviewed in terms of knock, hydrocarbon (HC) emissions, and seal leakages. The paper identifies the recent advances in design concepts and production approaches used in hydrogen-fueled rotary engines such as geometric models of trochoid profiles, port configurations, fuel utilization systems, and currently available computational fluid dynamics (CFD) tools. This review article is an attempt to collect and organize literature on existing design methods up to date and provide recommendations for further improvements in RE technology.
The geometric design of a gerotor motor has a significant impact on its function, performance, quality, reliability and cost. When designing a gerotor motor all these features must be considered. A gerotor motor can be classified into two types based on the geometric design; gerolor (pin design) and gerotor (nonpin design). In this article geometric parameters of the two design types are discussed briefly and the operation of the gerotor motor is described as well. A numerical analysis is carried out by using computational fluid dynamics (CFD) tool (PumpLinx) to analyze the fluid flow and predict the performance of both types of gerotor designs. Various characteristics of the two designs of the gerotor motor are investigated and compared which include the gerotor design, fluid flow rate, velocity, pressure and output torque. Comparison of the results found out that using pin design gerotor motor, the flow rate, flow velocity, pressure and torque will vary greatly. Nonpin design can significantly reduce variations in all the flow characteristics thereby enhancing the stability and reduction in the leakage risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.