No abstract
The ability of left-hemisphere stroke patients (n = 8) and healthy control subjects (n = 8) to process sounds preattentively and attentively was studied by recording auditory event-related potentials (ERPs) and behavioral responses. For the right-ear stimulation, the mismatch negativity (MMN) was significantly smaller in the patients than control subjects over both hemispheres. For the left-ear stimuli, the MMN was significantly smaller in the patient group than in the control group over the left hemisphere, whereas no group differences were obtained over the right hemisphere. In addition, the N1 amplitude was reduced bilaterally for the right-ear stimulation (with the reduction being larger over the left hemisphere), whereas no significant effects on the N1 amplitude were found for the left-ear stimulation. Behaviorally, the patients detected significantly fewer deviant tones than did the control subjects irrespective of the stimulated ear. The present results thus suggest that the long-latency ERPs can be used to probe such auditory processing deficits that are difficult to define with behavioral measures. Especially by recording MMN to monaural stimuli, the discrimination accuracy can be separately determined for the left and right temporal lobes.
Developmental dyslexia (DD) is the most prevalent neurodevelopmental disorder with a substantial negative influence on the individual’s academic achievement and career. Research on its neuroanatomical origins has continued for half a century, yielding, however, inconsistent results, lowered total brain volume being the most consistent finding. We set out to evaluate the grey matter (GM) volume and cortical abnormalities in adult dyslexic individuals, employing a combination of whole-brain voxel- and surface-based morphometry following current recommendations on analysis approaches, coupled with rigorous neuropsychological testing. Whilst controlling for age, sex, total intracranial volume, and performance IQ, we found both decreased GM volume and cortical thickness in the left insula in participants with DD. Moreover, they had decreased GM volume in left superior temporal gyrus, putamen, globus pallidus, and parahippocampal gyrus. Higher GM volumes and cortical thickness in these areas correlated with better reading and phonological skills, deficits of which are pivotal to DD. Crucially, total brain volume did not influence our results, since it did not differ between the groups. Our findings demonstrating abnormalities in brain areas in individuals with DD, which previously were associated with phonological processing, are compatible with the leading hypotheses on the neurocognitive origins of DD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.