Uniform urchin-like α-FeOOH hollow spheres assembled from nanoneedles have been synthesized via a facile and green one-pot method. By simply adjusting the amount of glycerol in the reaction system, hierarchical urchin-like α-FeOOH solid spheres or hollow spheres can be obtained. When evaluated for the potential use in water treatment, it is found that the as-obtained uniform urchin-like α-FeOOH hollow spheres exhibit excellent capability for removing both organic dye and heavy metal ions in waste water.
We report a new strategy to synthesize core-shell metal nanoparticles with an interior, Raman tag-encoded nanogap by taking advantage of nanoparticle-templated self-assembly of amphiphilic block copolymers and localized metal precursor reduction by redox-active polymer brushes. Of particular interest for surface-enhanced Raman scattering (SERS) is that the nanogap size can be tailored flexibly, with the sub-2 nm nanogap leading to the highest SERS enhancement. Our results have further demonstrated that surface functionalization of the nanogapped Au nanoparticles with aptamer targeting ligands allows for specific recognition and ultrasensitive detection of cancer cells. The general applicability of this new synthetic strategy, coupled with recent advances in controlled wet-chemical synthesis of functional nanocrystals, opens new avenues to multifunctional core-shell nanoparticles with integrated optical, electronic, and magnetic properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.