Electrostatic sensors have a simple but robust structure, which can detect the electric charge from moving charged particles. Measurement of the dry particle mass flow rate, velocity, and concentration in a conveyor are the main areas of sensor application. This paper considers the measurement methods and techniques that utilize electrostatic sensors for instrumentation. The most significant applications of the sensor are reviewed and a newly developed technique in particle sizing using the spatial filtering method is explained. The results of the study re-emphasize the flexibility, reliability and cost-effective features of the electrostatic sensor for industrial applications.
Purpose -Circular pipelines are mostly used for pneumatic conveyance in industrial processes. For optimum and efficient production in industries that use a pipeline for conveyance, tomographic image of the transport particles is paramount. Sensing mechanism plays a vital role in process tomography. The purpose of this paper is to present a two-dimensional (2-D) model for sensing the characteristics of electrostatic sensors for electrical charge tomography system. The proposed model uses the finite-element method. Design/methodology/approach -The domain is discretized into discrete shapes, called finite elements, by using a MATLAB. Each of these elements is taken as image pixels, on which the electric charges carried by conveyed particles are transformed into equations. The charges' interaction and the sensors installed around the circumference, at the sensing zone of the conveying pipeline are related by the proposed model equations. A matrix compression technique was also introduced to solve the problem of unevenly sensing characteristics of the sensors due to elements' number's concentration. The model equations were used to simulate the modeled electrostatic charge distribution carried by the particles moving in the pipeline. Findings -The simulated results show that the proposed sensors are highly sensitive to electrostatic charge at any position in the sensing zone, thereby making it a good candidate for tomographic image reconstruction. Originality/value -Tomographic imaging using finite element method is found to be more accurate and reliable compared to linear and filtered back projection method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.