In 2 O 3 has recently emerged as a promising catalyst for methanol synthesis from CO 2 . In this work, we present the promotional effect of Pd on this catalyst and investigate structure−performance relationships using in situ X-ray spectroscopy, ex situ characterization, and microkinetic modeling. Catalysts were synthesized with varying In:Pd ratios (1:0, 2:1, 1:1, 1:2, 0:1) and tested for methanol synthesis from CO 2 /H 2 at 40 bar and 300 °C. In:Pd(2:1)/SiO 2 shows the highest activity (5.1 μmol MeOH/g InPd s) and selectivity toward methanol (61%). While all bimetallic catalysts had enhanced catalytic performance, characterization reveals methanol synthesis was maximized when the catalyst contained both In−Pd intermetallic compounds and an indium oxide phase. Experimental results and density functional theory suggest the active phase arises from a synergy between the indium oxide phase and a bimetallic In−Pd particle with a surface enrichment of indium. We show that the promotion observed in the In−Pd system is extendable to non precious metal containing binary systems, in particular In−Ni, which displayed similar composition−activity trends to the In−Pd system. Both palladium and nickel were found to form bimetallic catalysts with enhanced methanol activity and selectivity relative to that of indium oxide.
Noble metals have an irreplaceable role in catalyzing electrochemical reactions. However, large overpotential and poor long-term stability still prohibit their usage in many reactions (e.g., oxygen evolution/reduction). With regard to the low natural abundance, the improvement of their overall electrocatalytic performance (activity, selectivity, and stability) was urgently necessary. Herein, strong metal–support interaction (SMSI) was modulated through an unprecedented time-dependent mechanical milling method on Pd-loaded oxygenated TiC electrocatalysts. The encapsulation of Pd surfaces with reduced TiO2–x overlayers is precisely controlled by the mechanical milling time. This encapsulation induced a valence band restructuring and lowered the d-band center of surface Pd atoms. For hydrogen peroxide electrosynthesis through the two-electron oxygen reduction reaction (ORR), these electronic and geometric modifications resulted in optimal adsorption energies of reaction intermediates. Thus, SMSI phenomena not only enhanced electrocatalytic activity and selectivity but also created an encapsulating oxide overlayer that protected the Pd species, increasing its long-term stability. This SMSI induced by mechanical milling was also extended to other noble metal systems, showing great promise for the large-scale production of highly stable and tunable electrocatalysts.
Bimetallic nanoparticles present a vastly tunable structural and compositional design space rendering them promising materials for catalytic and energy applications. Yet it remains an enduring challenge to efficiently screen candidate alloys with atomic level specificity while explicitly accounting for their inherent stabilities under reaction conditions. Herein, by leveraging correlations between binding energies of metal adsorption sites and metal–adsorbate complexes, we predict adsorption energies of typical catalytic descriptors (OH*, CH3*, CH*, and CO*) on bimetallic alloys with site-specific resolution. We demonstrate that our approach predicts adsorption energies on top and bridge sites of bimetallic nanoparticles having generic morphologies and chemical environments with errors between 0.09 and 0.18 eV. By forging a link between the inherent stability of an alloy and the adsorption properties of catalytic descriptors, we can now identify active site motifs in nanoalloys that possess targeted catalytic descriptor values while being thermodynamically stable under working conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.