Amyloid-β peptide, which accumulates in senile plaques in Alzheimer's disease, is derived from the amyloid precursor protein (APP) by proteolytic processing. β-secretase (Asp2), which cleaves APP at the N-terminus of amyloid-β, has recently been identified to be the protease BACE. In the present study, we examined the subcellular localization of interactions between APP and BACE by using both double immunofluorescence and a fluorescence resonance energy transfer (FRET) approach. Cell surface APP and BACE, studied by using antibodies directed against their ectodomains in living H4 neuroglioma cells co-transfected with APP and BACE, showed exquisite co-localization and demonstrated a very close interaction by FRET analysis. The majority of cell surface APP and BACE were internalized after 15 minutes,but they remained strongly co-localized together in the early endosomal compartment, where FRET analysis demonstrated a continued close interaction. By contrast, at later timepoints, almost no co-localization or FRET was observed in lysosomal compartments. To determine whether the APP-BACE interaction on cell surface and endosomes contributed to amyloid-βsynthesis, we labeled cell surface APP and demonstrated detectable levels of labeled amyloid-β within 30 minutes. APP-Swedish mutant protein enhanced amyloid-β synthesis from cell surface APP, consistent with the observation that it is a better BACE substrate than wild-type APP. Taken together, these data confirm a close APP-BACE interaction in early endosomes,and highlight the cell surface as an additional potential site of APP-BACE interaction.
Curcumin therapy in animals has produced positive cognitive and behavioural outcomes; results of human trials, however, have been inconsistent. In this study, we report the results of a 12-month, randomised, placebo-controlled, double-blind study that investigated the ability of a curcumin formulation to prevent cognitive decline in a population of community-dwelling older adults. Individuals (n 96) ingested either placebo or 1500 mg/d Biocurcumax TM for 12 months. A battery of clinical and cognitive measures was administered at baseline and at the 6-month and 12-month follow-up assessments. A significant time × treatment group interaction was observed for the Montreal Cognitive Assessment (repeated-measures analysis; time × treatment; F = 3·85, P < 0·05). Subsequent analysis revealed that this association was driven by a decline in function of the placebo group at 6 months that was not observed in the curcumin treatment group. No differences were observed between the groups for all other clinical and cognitive measures. Our findings suggest that further longitudinal assessment is required to investigate changes in cognitive outcome measures, ideally in conjunction with biological markers of neurodegeneration.
Curcumin derived from turmeric is well documented for its anti-carcinogenic, antioxidant and anti-inflammatory properties. Recent studies show that curcumin also possesses neuroprotective and cognitive-enhancing properties that may help delay or prevent neurodegenerative diseases, including Alzheimer’s disease (AD). Currently, clinical diagnosis of AD is onerous, and it is primarily based on the exclusion of other causes of dementia. In addition, phase III clinical trials of potential treatments have mostly failed, leaving disease-modifying interventions elusive. AD can be characterised neuropathologically by the deposition of extracellular β amyloid (Aβ) plaques and intracellular accumulation of tau-containing neurofibrillary tangles. Disruptions in Aβ metabolism/clearance contribute to AD pathogenesis. In vitro studies have shown that Aβ metabolism is altered by curcumin, and animal studies report that curcumin may influence brain function and the development of dementia, because of its antioxidant and anti-inflammatory properties, as well as its ability to influence Aβ metabolism. However, clinical studies of curcumin have revealed limited effects to date, most likely because of curcumin’s relatively low solubility and bioavailability, and because of selection of cohorts with diagnosed AD, in whom there is already major neuropathology. However, the fresh approach of targeting early AD pathology (by treating healthy, pre-clinical and mild cognitive impairment-stage cohorts) combined with new curcumin formulations that increase bioavailability is renewing optimism concerning curcumin-based therapy. The aim of this paper is to review the current evidence supporting an association between curcumin and modulation of AD pathology, including in vitro and in vivo studies. We also review the use of curcumin in emerging retinal imaging technology, as a fluorochrome for AD diagnostics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.