Agmatine, a significant polyamine in bacteria and plants, mostly arises from the decarboxylation of arginine. The functional importance of agmatine in fungi is poorly understood. The metabolism of agmatine and related guanidinium group-containing compounds in Aspergillus niger was explored through growth, metabolite, and enzyme studies. The fungus was able to metabolize and grow on L-arginine, agmatine, or 4-guanidinobutyrate as the sole nitrogen source. Whereas arginase defined the only route for arginine catabolism, biochemical and bioinformatics approaches suggested the absence of arginine decarboxylase in A. niger. Efficient utilization by the parent strain and also by its arginase knockout implied an arginase-independent catabolic route for agmatine. Urea and 4-guanidinobutyrate were detected in the spent medium during growth on agmatine. The agmatinegrown A. niger mycelia contained significant levels of amine oxidase, 4-guanidinobutyraldehyde dehydrogenase, 4-guanidinobutyrase (GBase), and succinic semialdehyde dehydrogenase, but no agmatinase activity was detected. Taken together, the results support a novel route for agmatine utilization in A. niger. The catabolism of agmatine by way of 4-guanidinobutyrate to 4-aminobutyrate into the Krebs cycle is the first report of such a pathway in any organism. A. niger GBase peptide fragments were identified by tandem mass spectrometry analysis. The corresponding open reading frame from the A. niger NCIM 565 genome was located and cloned. Subsequent expression of GBase in both Escherichia coli and A. niger along with its disruption in A. niger functionally defined the GBase locus (gbu) in the A. niger genome.
The enzyme 4-guanidinobutyrase (GBase) catalyzes the hydrolysis of 4-guanidinobutyric acid (GB) to 4-aminobutyric acid (GABA) and urea. Here we describe methods to estimate urea and GABA that were suitably adapted from the published literature. The urea is determined by colorimetric assay using modified Archibald's method. However, the low sensitivity of this method often renders it impractical to perform fine kinetic analysis. To overcome this limitation, a high sensitive method for detecting GABA is exploited that can even detect 1 μM of GABA in the assay mixture. The samples are deproteinized by perchloric acid (PCA) and potassium hydroxide treatment prior to HPLC analysis of GABA. The method involves a pre-column derivatization with o-phthalaldehyde (OPA) in combination with the thiol 3-mercaptopropionic acid (MPA). The fluorescent GABA derivative is then detected after reversed phase high performance liquid chromatography (RP-HPLC) using isocratic elution. The protocols described here are broadly applicable to other biological samples involving urea and GABA as metabolites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.