SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer) [Website] is a proposed all-sky spectroscopic survey satellite designed to address all three science goals in NASA's Astrophysics Division: probe the origin and destiny of our Universe; explore whether planets around other stars could harbor life; and explore the origin and evolution of galaxies. SPHEREx will scan a series of Linear Variable Filters systematically across the entire sky. The SPHEREx data set will contain R=40 spectra fir 0.75< λ <4.1µm and R=150 spectra for 4.1< λ <4.8µm for every 6.2 arcsecond pixel over the entire-sky. In this paper, we detail the extra-galactic and cosmological studies SPHEREx will enable and present detailed systematic effect evaluations. We also outline the Ice and Galaxy Evolution Investigations. I. SPHEREX MISSION OVERVIEWSPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer; PI: J. Bock) is a proposed all-sky survey satellite designed to address all three science goals in NASA's Astrophysics Division: probe the origin and destiny of our Universe; explore whether planets around other stars could harbor life; and explore the origin and evolution of galaxies. All of these exciting science themes are addressed by a single survey, with a single instrument, providing the first near-infrared spectroscopy of the complete sky. In this paper, we will focus on the cosmological science enabled by SPHEREx and outline the Galactic Ices and the Epoch of Reionization (EOR) scientific investigations.SPHEREx will probe the origin of the Universe by constraining the physics of inflation, the superluminal expansion of the Universe that took place some 10 −32 s after the Big Bang. SPHEREx will study its imprints in the threedimensional large-scale distribution of matter by measuring galaxy redshifts over a large cosmological volume at low redshifts, complementing high-redshift surveys optimized to constrain dark energy.SPHEREx will investigate the origin of water and biogenic molecules in all phases of planetary system formation -from molecular clouds to young stellar systems with protoplanetary disks -by measuring absorption spectra to determine the abundance and composition of ices toward > 2 × 10 4 Galactic targets. Interstellar ices are the likely source for water and organic molecules, the chemical basis of life on Earth, and knowledge of their abundance is key to understanding the formation of young planetary systems as well as the prospects for life on other planets.SPHEREx will chart the origin and history of galaxy formation through a deep survey mapping large-scale structure. This technique measures the total light produced by all galaxy populations, complementing studies based on deep galaxy counts, to trace the history of galactic light production from the present day to the first galaxies that ended the cosmic dark ages.SPHEREx will be the first all-sky near-infrared spectral survey, creating a legacy archive of spectra (0.75 ≤ λ ≤...
We report the detection of new binary black hole merger events in the publicly available data from the second observing run of advanced LIGO and advanced Virgo (O2). The mergers were discovered using the new search pipeline described in Venumadhav et al.[1], and are above the detection thresholds as defined in Abbott et al. [2]. Three of the mergers (GW170121, GW170304, GW170727) have inferred probabilities of being of astrophysical origin pastro > 0.98. The remaining three (GW170425, GW170202, GW170403) are less certain, with pastro ranging from 0.5 to 0.8. The newly found mergers largely share the statistical properties of previously reported events, with the exception of GW170403, the least secure event, which has a highly negative effective spin parameter χ eff . The most secure new event, GW170121 (pastro > 0.99), is also notable due to its inferred negative value of χ eff , which is inconsistent with being positive at the ≈ 95.8% confidence level. The new mergers nearly double the sample of gravitational wave events reported from O2, and present a substantial opportunity to explore the statistics of the binary black hole population in the Universe. The number of detected events is not surprising since we estimate that the detection volume of our pipeline is nearly twice that of other pipelines. The increase in volume is larger when the constituent detectors of the network have very different sensitivities, as is likely to be the case in current and future runs.
We report a new binary black hole merger in the publicly available LIGO First Observing Run (O1) data release. The event has a false alarm rate of one per six years in the detector-frame chirp-mass range M det ∈ [20, 40]M in a new independent analysis pipeline that we developed. Our best estimate of the probability that the event is of astrophysical origin is Pastro ∼ 0.71 . The estimated physical parameters of the event indicate that it is the merger of two massive black holes, M det = 31 +2 −3 M with an effective spin parameter, χ eff = 0.81 +0.15 −0.21 , making this the most highly spinning merger reported to date. It is also among the two highest redshift mergers observed so far. The high aligned spin of the merger supports the hypothesis that merging binary black holes can be created by binary stellar evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.