The acceptance of the GDPR legislation in 2018 started a new technological shift towards achieving transparency. GDPR put focus on the concept of informed consent applicable for data processing, which led to an increase of the responsibilities regarding data sharing for both end users and companies. This paper presents a literature survey of existing solutions that use semantic technology for implementing consent. The main focus is on ontologies, how they are used for consent representation and for consent management in combination with other technologies such as blockchain. We also focus on visualisation solutions aimed at improving individuals’ consent comprehension. Finally, based on the overviewed state of the art we propose best practices for consent implementation.
The enforcement of the GDPR in May 2018 has led to a paradigm shift in data protection. Organizations face significant challenges, such as demonstrating compliance (or auditability) and automated compliance verification due to the complex and dynamic nature of consent, as well as the scale at which compliance verification must be performed. Furthermore, the GDPR’s promotion of data protection by design and industrial interoperability requirements has created new technical challenges, as they require significant changes in the design and implementation of systems that handle personal data. We present a scalable data protection by design tool for automated compliance verification and auditability based on informed consent that is modeled with a knowledge graph. Automated compliance verification is made possible by implementing a regulation-to-code process that translates GDPR regulations into well-defined technical and organizational measures and, ultimately, software code. We demonstrate the effectiveness of the tool in the insurance and smart cities domains. We highlight ways in which our tool can be adapted to other domains.
The hard drive is one of the important components of a computing system, and its failure can lead to both system failure and data loss. Therefore, the reliability of a hard drive is very important. Realising this importance, a number of studies have been conducted and many are still ongoing to improve hard drive failure prediction. Most of those studies rely solely on machine learning, and a few others on semantic technology. The studies based on machine learning, despite promising results, lack context-awareness such as how failures are related or what other factors, such as humidity, influence the failure of hard drives. Semantic technology, on the other hand, by means of ontologies and knowledge graphs (KGs), is able to provide the context-awareness that machine learning-based studies lack. However, the studies based on semantic technology lack the advantages of machine learning, such as the ability to learn a pattern and make predictions based on learned patterns. Therefore, in this paper, leveraging the benefits of both machine learning (ML) and semantic technology, we present our study, knowledge graph-based hard drive failure prediction. The experimental results demonstrate that our proposed method achieves higher accuracy in comparison to the current state of the art.
In recent years, with the advancement in sensor technologies, computing technologies and artificial intelligence, the long-sought autonomous vehicles (AVs) have become a reality. Many AVs today are already driving on the roads. Still, we have not reached full autonomy. Sensors which allow AVs to perceive the surroundings are keys to the success of AVs to reach full autonomy. However, this requires an understanding of sensor configurations, performance and sensor placements. In this paper, we present our experience on sensors obtained from AV shuttle ise Auto. An AV shuttle ise Auto designed and developed in Tallinn University of Technology is used as an experimental platform for sensor configuration and set-up.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.