Gene regulators that are controlled by membranepermeable compounds called Homoserine lactones (HSLs) have become popular tools for building synthetic gene networks that coordinate behaviors across populations of engineered bacteria. Synthetic HSLsignaling systems are derived from natural DNA and protein elements from microbial quorum signaling pathways. Crosstalk, where a single HSL can activate multiple regulators, can lead to faults in networks composed of parallel signaling pathways. Here, we report an investigation of quorum sensing components to identify synthetic pathways that exhibit little to no crosstalk in liquid and solid cultures. In previous work, we characterized the response of a single regulator (LuxR) to ten distinct HSLsynthase enzymes. Our current study determined the responses of five different regulators (LuxR, LasR, TraR, BjaR, and AubR) to the same set of synthases. We identified two sets of orthogonal synthaseregulator pairs (BjaI/BjaR + EsaI/TraR and LasI/LasR + EsaI/TraR) that show little to no crosstalk when they are expressed in Escherichia coli BL21. These results expand the toolbox of characterized components for engineering microbial communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.