In social interactions, people who are perceived as competent win more chances, tend to have more opportunities, and perform better in both personal and professional aspects of their lives. However, the process of evaluating competence is still poorly understood. To fill this gap, we developed a two-step empirical study to propose a competence evaluation framework and a predictor of individual competence based on multimodal data using machine learning and computer vision methods. In study 1, from a knowledge-driven perspective, we first proposed a competence evaluation framework composed of 4 inner traits (skill, expression efficiency, intelligence, and capability) and 6 outer traits (age, eye gaze variation, glasses, length-to-width ratio, vocal energy, and vocal variation). Then, eXtreme Gradient Boosting (XGBoost) and Shapley Additive exPlanations (SHAP) were utilized to predict and interpret individual competence, respectively. The results indicate that 8 (4 inner and 4 outer) traits (in descending order: vocal energy, age, length-to-width ratio, glasses, expression efficiency, capability, intelligence, and skill) contribute positively to competence evaluation, while 2 outer traits (vocal variation and eye gaze variation) contribute negatively. In study 2, from a data-driven perspective, we accurately predicted competence with a cutting-edge multimodal machine learning algorithm, low-rank multimodal fusion (LMF), which exploits the intra- and intermodal interactions among all the visual, vocal, and textual features of an individual’s competence behavior. The results indicate that vocal and visual features contribute most to competence evaluation. In addition, we provided a Chinese Competence Evaluation Multimodal Dataset (CH-CMD) for individual competence analysis. This paper provides a systemic competence framework with empirical consolidation and an effective multimodal machine learning method for competence evaluation, offering novel insights into the study of individual affective traits, quality, personality, etc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.