In Krabbe’s Disease (KD), a leukodystrophy caused by β-galactosylceramidase deficiency, demyelination and a myelin-independent axonopathy contribute to the severe neuropathology. Beyond axonopathy, we show that in Twitcher mice, a model of KD, a decreased number of axons both in the PNS and CNS, and of neurons in dorsal root ganglia (DRG), occurred before the onset of demyelination. Despite the early axonal loss, and although in vitro Twitcher neurites degenerated over time, Twitcher DRG neurons displayed an initial neurite overgrowth and, following sciatic nerve injury, Twitcher axons were regeneration-competent, at a timepoint where axonopathy was already ongoing. Psychosine, the toxic substrate that accumulates in KD, induced lipid raft clustering. At the mechanistic level, TrkA recruitment to lipid rafts was dysregulated in Twitcher neurons, and defective activation of the ERK1/2 and AKT pathways was identified. Besides defective recruitment of signaling molecules to lipid rafts, the early steps of endocytosis and the transport of endocytic and synaptic vesicles were impaired in Twitcher DRG neurons. Defects in axonal transport, specifically in the retrograde component, correlated with decreased levels of dynein, abnormal levels of post-translational tubulin modifications and decreased microtubule stability. The identification of the axonal defects that precede demyelination in KD, together with the finding that Twitcher axons are regeneration-competent when axonopathy is already installed, open new windows of action to effectively correct the neuropathology that characterizes this disorder.
Highlights d RhoA restrains axon initiation and growth independent of specification d Myosin II is the physiological target of RhoA during axon growth d RhoA/myosin-II-dependent actin arcs restrict microtubule advance in the growth cone d RhoA instructs the duration of growth and pause phases in developing axons
Despite the inability of CNS axons to regenerate, an increased regenerative capacity can be elicited following conditioning lesion to the peripheral branch of dorsal root ganglia neurons (DRGs). By in vivo radiolabeling of rat DRGs, coupled to mass spectrometry and kinesin immunoprecipitation of spinal cord extracts, we determined that the anterograde transport of cytoskeleton components, metabolic enzymes and axonal regeneration enhancers, was increased in the central branch of DRGs following a peripheral conditioning lesion. Axonal transport of mitochondria was also increased in the central branch of Thy1-MitoCFP mice following a peripheral injury. This effect was generalized and included augmented transport of lysosomes and synaptophysin-and APP-carrying vesicles. Changes in axonal transport were only elicited by a peripheral lesion and not by spinal cord injury. In mice, elevated levels of motors and of polyglutamylated and tyrosinated tubulin were present following a peripheral lesion and can explain the increase in axonal transport induced by conditioning. In summary, our work shows that a peripheral injury induces a global increase in axonal transport that is not restricted to the peripheral branch, and that, by extending to the central branch, allows a rapid and sustained support of regenerating central axons.
Highlights d Elevated actin turnover is essential for regenerative growth d ADF/cofilin activity increases during conditioning-mediated regeneration d ADF/cofilin is necessary and sufficient for axon regeneration d The severing activity of ADF/cofilin is critical for axon regeneration
BackgroundIn the adult central nervous system, axonal regeneration is abortive. Regulators of microtubule dynamics have emerged as attractive targets to promote axonal growth following injury as microtubule organization is pivotal for growth cone formation. In this study, we used conditioned neurons with high regenerative capacity to further dissect cytoskeletal mechanisms that might be involved in the gain of intrinsic axon growth capacity.ResultsFollowing a phospho-site broad signaling pathway screen, we found that in conditioned neurons with high regenerative capacity, decreased glycogen synthase kinase 3β (GSK3β) activity and increased microtubule growth speed in the growth cone were present. To investigate the importance of GSK3β regulation during axonal regeneration in vivo, we used three genetic mouse models with high, intermediate or no GSK3β activity in neurons. Following spinal cord injury, reduced GSK3β levels or complete neuronal deletion of GSK3β led to increased growth cone microtubule growth speed and promoted axon regeneration. While several microtubule-interacting proteins are GSK3β substrates, phospho-mimetic collapsin response mediator protein 2 (T/D-CRMP-2) was sufficient to decrease microtubule growth speed and neurite outgrowth of conditioned neurons and of GSK3β-depleted neurons, prevailing over the effect of decreased levels of phosphorylated microtubule-associated protein 1B (MAP1B) and through a mechanism unrelated to decreased levels of phosphorylated cytoplasmic linker associated protein 2 (CLASP2). In addition, phospho-resistant T/A-CRMP-2 counteracted the inhibitory myelin effect on neurite growth, further supporting the GSK3β-CRMP-2 relevance during axon regeneration.ConclusionsOur work shows that increased microtubule growth speed in the growth cone is present in conditions of increased axonal growth, and is achieved following inactivation of the GSK3β-CRMP-2 pathway, enhancing axon regeneration through the glial scar. In this context, our results support that a precise control of microtubule dynamics, specifically in the growth cone, is required to optimize axon regrowth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.