delta-Sarcoglycan (delta-SG) is one of the first proteins of the sarcoglycan complex (SGC) to be expressed during muscle development, and it has been considered fundamental for the assembling and insertion of the SGC in the sarcolemma. Studies using heterologous cell systems and co-precipitation have demonstrated that SGC assembly was dependent on the simultaneous synthesis of all four sarcoglycan proteins. Mutations in any one of sarcoglycan genes, including the common disease causing mutation c.656delC in the delta-SG gene, block complex formation and its insertion in the plasma membrane. Failure in complex assembly in patients with this mutation would be therefore expected. In this study, we provide evidence for the possibility of preservation of part of the SG complex in the sarcolemma, even in the absence of delta-SG. This is based on the study of one mildly affected patient with limb-girdle muscular dystrophy type 2F (LGMD2F) due to the homozygous c.656delC mutation in the delta-SG gene. Protein analysis in his muscle biopsy presented a significant deficiency of only delta-SG with retention of the other three SG proteins in the sarcolemma. RNA expression analysis showed that zeta-SG, a functionally homologous to delta-SG, is not atypically upregulated in his muscle and would not replace the absent delta-SG, retaining the complex alpha-beta-gamma-zeta. The patient started clinical manifestation at age 25, with frequent falls, but he is currently able to walk unassisted at age 42. His clinical course is significantly milder when compared to several other affected patients carrying the same mutation associated with a total deficiency of the four SG proteins in the muscle studied by our group and confirmed in other patients. Therefore, our results add a new in vivo evidence that alpha-, beta-, and gamma-SG proteins can be maintained in the sarcolemma without delta-SG. Additionally, LGMD2F, with retention of the part of the SGC, might be associated to a milder clinical course, which has important implications for clinical prognosis and genetic counseling of the family.
Sarcoglycanopathies (SGpathies) are highly frequent among severely affected limb-girdle muscular dystrophy patients. On the basis of the findings of 5 common mutations in the 4 sarcoglycan (SG) genes in the Brazilian population, we standardized a multiplex polymerase chain reaction-single-strand conformation polymorphism methodology for their concomitant analysis in DNA samples. The test was able to confirm the diagnosis in about 63% of new patients with a suspected SGpathy and was particularly important in patients in advanced stages of the disease, when obtaining a muscle biopsy for analysis may be very difficult. As common mutations have been described in several countries, this multiplex analysis could be useful for the diagnosis of SGpathies if established according to the most prevalent mutations in each population. Besides, even though the disorder studied is rare, the technique could be broadly applicable to other genes and disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.