Many advantages have been described surrounding self-ligating (SL) brackets compared to metallic conventional ligating (CL) brackets, such as: Less total treatment time, alignment efficiency, patient comfort, plaque retention, and low friction. The objective of this in vitro simulation was to know the variables that affect arch displacement in CL and SL brackets—active (ASL) and passive (PSL)—and analyze if static friction values are affected by bracket design, arch wire section, kind of ligature, and use of a friction reducer agent (FRA) in a wet state. Larger values of static friction were found in CL with metallic ligature (ML) (8.01 ± 1.08 N/mm) and elastic ligature (EL) (6.96 ± 0.48 N/mm). Lower values were found in PSL brackets combined with FRA (0.58 ± 0.21 N/mm). The study was carried out using different stereographical models of a maxillary upper right quadrant with canine, first and second premolar, and first molar bonded brackets. A section of 25 mm of 0.019 × 0.025” stainless steel arch with a rectangular section (SS) and hybrid section (HY) was inserted into the different bracket models. Static friction values were collected using a universal test machine in wet conditions and testing the effect of a friction reducer agent (FRA). To assure the reliability of the study, different wire combinations were repeated after two weeks by the same operator and a linear analysis of regression was done. Each bracket model analysis—with the different wires, use of the FRA, and comparison among brackets in similar conditions—was done using an ANOVA test with a confidence interval of 95% and comparative Post-Hoc tests (LSD). In this in vitro simulation we found higher static friction values in CL compared to ASL and PSL. In PSL, lower values were achieved. CL brackets using ML showed the highest static friction values with a great variability. In this setting, the use of HY wires did not reduce static friction values in ASL and PSL, while in CL brackets with EL friction the values were reduced significantly. An FRA combined with ASL reduced significantly static friction values but not with PSL. In the case of CL, the FRA effect was higher with SS and better than with HY wires. ML values were similar to ASL static friction. The direct extrapolation of the results might be inaccurate, since all these findings should be tested clinically to be validated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.