Complications of acute respiratory distress syndrome (ARDS) are common among critically ill patients infected with highly pathogenic influenza viruses. Macrophages and neutrophils constitute the majority of cells recruited into infected lungs, and are associated with immunopathology in influenza pneumonia. We examined pathological manifestations in models of macrophage-or neutrophil-depleted mice challenged with sublethal doses of influenza A virus H1N1 strain PR8. Infected mice depleted of macrophages displayed excessive neutrophilic infiltration, alveolar damage, and increased viral load, later progressing into ARDS-like pathological signs with diffuse alveolar damage, pulmonary edema, hemorrhage, and hypoxemia. In contrast, neutrophil-depleted animals showed mild pathology in lungs. The brochoalveolar lavage fluid of infected macrophage-depleted mice exhibited elevated protein content, T1-␣, thrombomodulin, matrix metalloproteinase-9, and myeloperoxidase activities indicating augmented alveolarcapillary damage, compared to neutrophil-depleted animals. We provide evidence for the formation of neutrophil extracellular traps (NETs), entangled with alveoli in areas of tissue injury, suggesting their potential link with lung damage. When co-incubated with infected alveolar epithelial cells in vitro, neutrophils from infected lungs strongly induced NETs generation, and augmented endothelial damage. NETs induction was abrogated by anti-myeloperoxidase antibody and an inhibitor of superoxide dismutase, thus implying that NETs generation is induced by redox enzymes in influenza pneumonia. These findings support the pathogenic effects of excessive neutrophils in acute lung injury of influenza pneumonia by instigating alveolar-capillary damage.
SARS-CoV-2 infection poses a major threat to the lungs and multiple other organs, occasionally causing death. Until effective vaccines are developed to curb the pandemic, it is paramount to define the mechanisms and develop protective therapies to prevent organ dysfunction in patients with COVID-19. Individuals that develop severe manifestations have signs of dysregulated innate and adaptive immune responses. Emerging evidence implicates neutrophils and the disbalance between neutrophil extracellular trap (NET) formation and degradation plays a central role in the pathophysiology of inflammation, coagulopathy, organ damage, and immunothrombosis that characterize severe cases of COVID-19. Here, we discuss the evidence supporting a role for NETs in COVID-19 manifestations and present putative mechanisms, by which NETs promote tissue injury and immunothrombosis. We present therapeutic strategies, which have been successful in the treatment of immunο-inflammatory disorders and which target dysregulated NET formation or degradation, as potential approaches that may benefit patients with severe COVID-19.
Although exaggerated host immune responses have been implicated in influenza-induced lung pathogenesis, the etiologic factors that contribute to these events are not completely understood. We previously demonstrated that neutrophil extracellular traps exacerbate pulmonary injury during influenza pneumonia. Histones are the major protein components of neutrophil extracellular traps and are known to have cytotoxic effects. Here, we examined the role of extracellular histones in lung pathogenesis during influenza. Mice infected with influenza virus displayed high accumulation of extracellular histones, with widespread pulmonary microvascular thrombosis. Occluded pulmonary blood vessels with vascular thrombi often exhibited endothelial necrosis surrounded by hemorrhagic effusions and pulmonary edema. Histones released during influenza induced cytotoxicity and showed strong binding to platelets within thrombi in infected mouse lungs. Nasal wash samples from influenza-infected patients also showed increased accumulation of extracellular histones, suggesting a possible clinical relevance of elevated histones in pulmonary injury. Although histones inhibited influenza growth in vitro, in vivo treatment with histones did not yield antiviral effects and instead exacerbated lung pathology. Blocking with antihistone antibodies caused a marked decrease in lung pathology in lethal influenza-challenged mice and improved protection when administered in combination with the antiviral agent oseltamivir. These findings support the pathogenic effects of extracellular histones in that pulmonary injury during influenza was exacerbated. Targeting histones provides a novel therapeutic approach to influenza pneumonia.
Seasonal influenza virus infections may lead to debilitating disease, and account for significant fatalities annually worldwide. Most of these deaths are attributed to the complications of secondary bacterial pneumonia. Evidence is accumulating to support the notion that neutrophil extracellular traps (NETs) harbor several antibacterial proteins, and trap and kill bacteria. We have previously demonstrated the induction of NETs that contribute to lung tissue injury in severe influenza pneumonia. However, the role of these NETs in secondary bacterial pneumonia is unclear. In this study, we explored whether NETs induced during pulmonary influenza infection have functional significance against infections with Streptococcus pneumoniae and other bacterial and fungal species. Our findings revealed that NETs do not participate in killing of Streptococcus pneumoniae in vivo and in vitro. Dual viral and bacterial infection elevated the bacterial load compared to animals infected with bacteria alone. Concurrently, enhanced lung pathogenesis was observed in dual-infected mice compared to those challenged with influenza virus or bacteria alone. The intensified NETs in dual-infected mice often appeared as clusters that were frequently filled with partially degraded DNA, as evidenced by punctate histone protein staining. The severe pulmonary pathology and excessive NETs generation in dual infection correlated with exaggerated inflammation and damage to the alveolar-capillary barrier. NETs stimulation in vitro did not significantly alter the gene expression of several antimicrobial proteins, and these NETs did not exhibit any bactericidal activity. Fungicidal activity against Candida albicans was observed at similar levels both in presence or absence of NETs. These results substantiate that the NETs released by primary influenza infection do not protect against secondary bacterial infection, but may compromise lung function.
There are no ideal cell lines available for alveolar epithelial type I and II cells (AEC I and II) at the present time. The current methods for isolating AEC I and II give limited purities. Here, we reported improved and reproducible methods for the isolation of highly pure AEC I and II from rat lungs. AEC I and II were released from lung tissues using different concentrations of elastase digestion. Macrophages and leukocytes were removed by rat IgG 'panning' and anti-rat leukocyte common antigen antibodies. For AEC II isolation, polyclonal rabbit anti-T1a (an AEC I apical membrane protein) antibodies were used to remove AEC I contamination. For AEC I isolation, positive immunomagnetic selection by polyclonal anti-T1a antibodies was used. The purities of AEC I and II were 9174 and 9771%, respectively. The yield per rat was B2 Â 10 6 for AEC I and B33 Â 10 6 for AEC II. The viabilities of these cell preparations were more than 96%. The protocol for AEC II isolation is also suitable to obtain pure AEC II (93-95%) from hyperoxia-injured and recovering lungs. The purified AEC I and II can be used for gene expression profiling and functional studies. It also offers an important tool to the field of lung biology. The alveolar epithelium is composed of type I and II pneumocytes (AEC I and II). AEC I and II are morphologically and functionally different. AEC I are squamous in shape, with a diameter of B50-100 mm and a volume of B2000-3000 mm 3 . 1 AEC I cover B95% of the surface area of the lung and are important for gas exchange. Recent studies indicated that AEC I play active roles in water permeability and the regulation of alveolar fluid homeostasis.2,3 AEC II are cuboidal, with a diameter of B10 mm and a volume of B450-900 mm 3 . 1 AEC II occupy only B5% of the surface area. They produce, secrete, and recycle lung surfactant. AEC II can be also converted to AEC I to repair damaged epithelium after lung injury or during fetal lung development.Given the importance of AEC I and II in lung functions, it is necessary to isolate enriched populations of AEC I and II with sufficient viability and purity for functional studies. The method for AEC II isolation developed by Dobbs et al 4 has been used by most investigators. However, the purity of the isolated AEC II is only 80-89%. Although those cell preparations may be appropriate for studying lung surfactant metabolism, they are not pure enough for gene expression profiling. A few reports attempted to obtain higher purities of AEC II. Weller and Karnovsky 5 reported a 90% pure AEC II from rats using Percoll gradient centrifugation, while Abraham et al 6 isolated 90-95% pure AEC II by using rat IgG panning and rabbit IgG coated BioMag beads. AEC I have been studied to a lesser extent. Recently, a few laboratories have isolated AEC I with limited purities or yields using AEC I-specific monoclonal antibodies produced in their laboratories. The typical purities were 60 B86%. 2,3,7 In order to isolate a specific type of cells, reliable methods to identify the cells are needed....
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.