We study the performance of a computer-aided detection (CAD) system for lung nodules in computed tomography (CT) as a function of slice thickness. In addition, we propose and compare three different training methodologies for utilizing nonhomogeneous thickness training data (i.e., composed of cases with different slice thicknesses). These methods are (1) aggregate training using the entire suite of data at their native thickness, (2) homogeneous subset training that uses only the subset of training data that matches each testing case, and (3) resampling all training and testing cases to a common thickness. We believe this study has important implications for how CT is acquired, processed, and stored. We make use of 192 CT cases acquired at a thickness of 1.25 mm and 283 cases at 2.5 mm. These data are from the publicly available Lung Nodule Analysis 2016 dataset. In our study, CAD performance at 2.5 mm is comparable with that at 1.25 mm and is much better than at higher thicknesses. Also, resampling all training and testing cases to 2.5 mm provides the best performance among the three training methods compared in terms of accuracy, memory consumption, and computational time.
Deep learning approaches play a crucial role in computer-aided diagnosis systems to support clinical decision-making. However, developing such automated solutions is challenging due to the limited availability of annotated medical data. In this study, we proposed a novel and computationally efficient deep learning approach to leverage small data for learning generalizable and domain invariant representations in different medical imaging applications such as malaria, diabetic retinopathy, and tuberculosis. We refer to our approach as Incremental Modular Network Synthesis (IMNS), and the resulting CNNs as Incremental Modular Networks (IMNets). Our IMNS approach is to use small network modules that we call SubNets which are capable of generating salient features for a particular problem. Then, we build up ever larger and more powerful networks by combining these SubNets in different configurations. At each stage, only one new SubNet module undergoes learning updates. This reduces the computational resource requirements for training and aids in network optimization. We compare IMNets against classic and state-of-the-art deep learning architectures such as AlexNet, ResNet-50, Inception v3, DenseNet-201, and NasNet for the various experiments conducted in this study. Our proposed IMNS design leads to high average classification accuracies of 97.0%, 97.9%, and 88.6% for malaria, diabetic retinopathy, and tuberculosis, respectively. Our modular design for deep learning achieves the state-of-the-art performance in the scenarios tested. The IMNets produced here have a relatively low computational complexity compared to traditional deep learning architectures. The largest IMNet tested here has 0.95 M of the learnable parameters and 0.08 G of the floating-point multiply–add (MAdd) operations. The simpler IMNets train faster, have lower memory requirements, and process images faster than the benchmark methods tested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.