EpiCass and CassavaNet4Dev are collaborative projects funded by the Swedish Research Council between the Swedish University of Agriculture (SLU) and the International Institute of Tropical Agriculture (IITA). The projects aim to investigate the influence of epigenetic changes on agricultural traits such as yield and virus resistance while also providing African students and researchers with advanced bioinformatics training and opportunities to participate in big data analysis events. The first advanced bioinformatics training workshop took place from May 16th to May 18th, 2022, followed by an online mini-symposium titled "Epigenetics and crop improvement" on May 19th. The symposium featured international speakers covering a wide range of topics related to plant epigenetics, cassava viral diseases, and cassava breeding strategies. A new online and on-site teaching concept was developed for the three-day workshop to ensure maximum student participation across Western, Eastern, and Southern Africa. Initially planned in Nigeria, Kenya, Ethiopia, Tanzania, and Zambia, the workshop ultimately focused on Nigeria, Kenya, and Ethiopia due to a lack of qualified candidates in the other countries. Each classroom hosted 20 to 25 students, with at least one bioinformatician present for support. The classrooms were connected via video conferencing, whereas teachers located in different places in Africa and Europe joined the video stream to conduct teaching sessions. The workshop was divided into theoretical classes and hands-on sessions, where participants could run data analysis with support from online teachers and local bioinformaticians. To enable participants to run guided, CPU and RAM-intensive data analysis workflows and overcome local computing and internet access restrictions, a system of virtual machines (VMs) hosted in the cloud was developed. The teaching platform provided teaching and exercise materials to support the use of the VMs. Although some students could not run heavy data analysis workflows due to unforeseen restrictions in the cloud, these issues were solved. All participants had the opportunity to run the analysis steps independently in the cloud using the protocols hosted on the teaching platform.
The knowledge of signaling pathways is central to understanding the biological mechanisms of organisms since it has been identified that in eukaryotic organisms, the number of signaling pathways determines the number of ways the organism will react to external stimuli. Signaling pathways are studied using protein interaction networks constructed from protein-protein interaction data obtained from high-throughput experiments. However, these high-throughput methods are known to produce very high rates of false positive and negative interactions. To construct a useful protein interaction network from this noisy data, computational methods are applied to validate the protein-protein interactions. In this study, a computational technique to identify signaling pathways from a protein interaction network constructed using validated protein-protein interaction data was designed. A weighted interaction graph of was constructed. Saccharomyces CerevisiaeThe weights were obtained using a Bayesian probabilistic network to estimate the posterior probability of interaction between two proteins given the gene expression measurement as biological evidence. Only interactions above a threshold were accepted for the network model. We were able to identify some pathway segments, one of which is a segment of the pathway that signals the start of the process of meiosis in . S. Cerevisiae
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.