Highway programmes typically focus on reducing vehicle collisions with large mammals because of economic or safety reasons, while overlooking the millions of birds that die annually from traffic. We studied wildlife–vehicle collisions along an interstate highway in southern Idaho, USA, with among the highest reported rates of American Barn Owl Tyto furcata road mortality. Carcass data from systematic and ad hoc surveys conducted in 2004–2006 and 2013–2015 were used to explore the extent to which spatial, road geometric and biotic factors explained Barn Owl–vehicle collisions. Barn Owls outnumbered all other identified vertebrate species of roadkill and represented > 25% of individuals and 73.6% of road‐killed birds. At a 1‐km highway segment scale, the number of dead Barn Owls decreased with increasing numbers of human structures, cumulative length of secondary roads near the highway and width of the highway median. The number of dead Barn Owls increased with higher commercial average annual daily traffic (CAADT), small mammal abundance index and grass rather than shrubs in the roadside verge. The small mammal abundance index was also greater in roadsides with grass vs. mixed shrubs, suggesting that Barn Owls may be attracted to grassy portions of the highway with more abundant small mammals for hunting prey. When assessed at a 3‐km highway segment scale, the number of dead Barn Owls again increased, with higher CAADT as well as with greater numbers of dairy farms. At a 5‐km scale, the number of dead Barn Owls increased with a greater percentage of cropland near the highway. Although human conversion of the environment from natural shrub‐steppe to irrigated agriculture in this region of Idaho has probably enhanced habitat for Barns Owls, it simultaneously has increased risk for owl–vehicle collisions where an interstate highway traverses the altered landscape. We review some approaches for highway mitigation and suggest that reducing wildlife–vehicle collisions involving Barn Owls may contribute to the persistence of this species.
BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.