ABSTRACT:Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a cold-air outbreak mixed-phase stratocumulus cloud observed during the Atmospheric Radiation Measurement (ARM) programme's Mixed-Phase Arctic Cloud Experiment. The observed cloud occurred in a well-mixed boundary layer with a cloud-top temperature of −15 • C. The average liquid water path of around 160 g m −2 was about two-thirds of the adiabatic value and far greater than the average mass of ice which when integrated from the surface to cloud top was around 15 g m −2 .Simulations of 17 single-column models (SCMs) and 9 cloud-resolving models (CRMs) are compared. While the simulated ice water path is generally consistent with observed values, the median SCM and CRM liquid water path is a factor-of-three smaller than observed. Results from a sensitivity study in which models removed ice microphysics suggest that in many models the interaction between liquid and ice-phase microphysics is responsible for the large model underestimate of liquid water path.Despite this underestimate, the simulated liquid and ice water paths of several models are consistent with observed values. Furthermore, models with more sophisticated microphysics simulate liquid and ice water paths that are in better agreement with the observed values, although considerable scatter exists. Although no single factor guarantees a good simulation, these results emphasize the need for improvement in the model representation of mixed-phase microphysics.
An intercomparison of six cloud-resolving and large-eddy simulation models is presented. This case study is based on observations of a persistent mixed-phase boundary layer cloud gathered on 7 May, 1998 from the Surface Heat Budget of Arctic Ocean (SHEBA) and First ISCCP Regional Experiment -Arctic Cloud Experiment (FIRE-ACE). Ice nucleation is constrained in the simulations in a way that holds the ice crystal concentration approximately fixed, with two sets of sensitivity runs in addition to the baseline simulations utilizing different specified ice nucleus (IN) concentrations. All of the baseline and sensitivity simulations group into two distinct quasi-steady states associated with either persistent mixed-phase clouds or all-ice clouds after the first few hours of integration, implying the existence of multiple states for this case. These two states are associated with distinctly different microphysical, thermodynamic, and radiative characteristics. Most but not all of the models produce a persistent mixed-phase cloud qualitatively similar to observations using the baseline IN/crystal concentration, while small increases in the IN/crystal concentration generally lead to rapid glaciation and conversion to the all-ice state. Budget analysis indicates that larger ice deposition rates associated with increased IN/crystal concentrations have a limited direct impact on dissipation of liquid in these simulations. However, the impact of increased ice deposition is greatly enhanced by several interaction pathways that lead to an increased surface precipitation flux, weaker cloud top radiative cooling and cloud dynamics, and reduced vertical mixing, promoting rapid glaciation of the mixed-phase cloud for deposition rates in the cloud layer greater than about 122610 -5 g kg -1 s -1 for this case. These results indicate the critical importance of precipitation-radiative-dynamical interactions in simulating cloud phase, which have been neglected in previous fixed-dynamical parcel studies of the cloud phase parameter space. Large sensitivity to the IN/crystal concentration also suggests the need for improved understanding of ice nucleation and its parameterization in models.
[1] We describe a method to evaluate cloud microphysics simulated with a global cloud-resolving model against CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite data. Output from the Nonhydrostatic Icosahedral Atmospheric Model (NICAM) is run through a satellite-sensor simulator (Joint Simulator for Satellite Sensors), then directly compared to the radar and lidar signals from CloudSat and CALIPSO. The forward approach allows for consistency in cloud microphysical assumption involved in the evaluation. To investigate the dependence of the signals on the temperature, we use temperature extensively as the vertical coordinate. The global statistical analysis of the radar reflectivity shows that the simulation overestimates all the percentiles above À50°C and that snow category contributes significantly to low reflectivity values between À80 and À40°C. The simulated lidar signals have two modes associated with cloud ice and snow categories, though the observations have only one mode. The synergetic use of radar reflectivity and lidar backscatter enables us to determine the relative magnitudes of ice/liquid water contents and effective radii without use of retrievals. The radar-and-lidar diagnosis for cloud tops shows that, due to snow category, NICAM overestimates the mass-equivalent effective radius and underestimates ice water content. Also, the diagnosis was shown to be useful to investigate sensitivities of the parameters of bulk microphysical schemes on the water contents and sizes. The nonspherical scattering of ice particles was shown to affect the above radar-and-lidar diagnosis for large reflectivity ranges but not to alter most of the other diagnoses for this simulation.
Abstract. Ensemble prediction systems are used operationally to make probabilistic streamflow forecasts for seasonal time scales. However, hydrological models used for ensemble streamflow prediction often have simulation biases that degrade forecast quality and limit the operational usefulness of the forecasts. This study evaluates three biascorrection methods for ensemble streamflow volume forecasts. All three adjust the ensemble traces using a transformation derived with simulated and observed flows from a historical simulation. The quality of probabilistic forecasts issued when using the three bias-correction methods is evaluated using a distributions-oriented verification approach. Comparisons are made of retrospective forecasts of monthly flow volumes for a north-central United States basin (Des Moines River, Iowa), issued sequentially for each month over a 48-year record. The results show that all three bias-correction methods significantly improve forecast quality by eliminating unconditional biases and enhancing the potential skill. Still, subtle differences in the attributes of the bias-corrected forecasts have important implications for their use in operational decision-making. Diagnostic verification distinguishes these attributes in a context meaningful for decision-making, providing criteria to choose among bias-correction methods with comparable skill.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.