Objective To evaluate the impact of PEG content on poly(lactic‐co‐glycolic acid) (PLGA) NP physicochemical properties, hydrophobic drug release (rifampicin as a model drug) and human serum protein binding. Methods Rifampicin loaded and unloaded nanoparticles with PEG content of 0–17% (w/w) were prepared by an emulsification–evaporation technique. Nanoparticles were characterized for size, zeta potential and morphology. PEGlyation was confirmed using proton nuclear magnetic resonance (1H NMR). Fluorescence spectroscopy and dynamic light scattering were used to determine nanoparticle‐protein binding, binding constants and stability of nanoparticles in human serum, respectively. Drug loading and release were determined by UV‐VIS spectroscopy and drug release data was mathematically modelled. Key findings A NP PEG content of 17% w/w significantly retarded release of rifampicin from PLGA NPs and altered kinetics of drug release. Stern–Volmer (Ksv) protein binding constants decreased upon PEG incorporation. A 2% w/w PEG was sufficient to significantly reduce protein binding extent to PLGA NPs and maintain particle size distributions. Conclusion The ability to fine tune drug release and formation of protein corona around nanoparticles is crucial to formulation scientists. This study suggests that PLGA NPs with low PEG content might be suitable for extended circulation and rapid drug release and that higher PEG content retards hydrophobic drug release.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.