Hybrid mobile robots with multiple locomotion modes are getting more and more popular in search and rescue (SAR) and explosive object disposal (EOD) missions because of their good terrain adaptability. Present researchers devote themselves to develop efficient and reliable transition method between different locomotion modes to make the hybrid robot more compact and flexible. In this paper, we present a novel transition mechanism for a hybrid wheel-track based on foldable rims. The wheel rim is cut into four segments so that it is foldable. And the transition between wheel and track is achieved by the folding or unfolding of the foldable rim. According to its geometrical property during the transition process, a single-freedom supporting spoke is proposed to drive the foldable rim’s transformation. We analyze the length and angle varying principles of the supporting spoke by utilizing the kinematic mode based on screw theory. According to above results, five different kinds of transition mechanism of the supporting spoke is designed, performance comparison among which is conducted by dynamic simulations. Two of the five candidate transition mechanisms are picked up for their smaller driving force requirements. Their 3D printing prototypes are also fabricated and experiments show that the hybrid wheel-track can switch between wheel and track successfully. Compared to most hybrid robots which have separate wheels, tracks and legs, this transition mechanism makes the robot own both compact structure and multimodal locomotion.
On the foundation of employing the new induced generalized intuitionistic fuzzy ordered weighted averaging operator to aggregate all decision matrices into a collective decision matrix, for the two special situations where the information on attribute weights is incomplete and inconsistent or completely unknown, the feasibility of utilizing linear optimization technology as a core element within the accuracy function to obtain criterion weight is being investigated, and a novel model of entropy weights for determining the exact criterion weight is established, respectively. In this paper, the extended VIKOR method is developed to solve group decision making problems assuming that compromising is acceptable to resolve conflicts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.