The production of the existing nitrogen fertilizer is costly and less environmental-friendly. Various green technologies are currently emerging toward providing alternative options. In this study, a liquid/liquid hydrophobic hollow-fiber membrane contactor was employed at ambient temperature and natural urine pH ~ 9.7 to recover ammonium fertilizers from human urine. Results showed that permeate side chemistry was one of the major factors affecting the ammonia mass transfer. The study on the ammonia capturing performance of diluted sulfuric acid, phosphoric acid, nitric acid, and DI water confirmed that acid type, acid concentration, and permeate side operating pH were the most important parameters affecting the ammonia capturing tendency. Sulfuric acid was slightly better in capturing more ammonia than other acid types. The study also identified increasing acid concentration didn’t necessarily increase ammonia mining tendency because there was always one optimum concentration value at which maximum ammonia extraction was possible. The best permeate side operating pH to extract ammonia for fertilizer purposes was selected based on the dissociation equilibrium of different types of acids. Accordingly, the analysis showed that the membrane process has to be operated at pH > 3 for sulfuric acid, between 3.5 to 11.5 for phosphoric acid, and above 0.5 for nitric acid so as to produce their respective high-quality liquid ammonium sulfate, ammonium monophosphate/diphosphate, and ammonium nitrate fertilizer. Therefore, permeate side acid concentration, pH, and acid type has to always be critically optimized before starting the ammonia mining experiment.
Magnetic zeolite NaA with different Fe(3)O(4) loadings was prepared by hydrothermal synthesis based on metakaolin and Fe(3)O(4). The effect of added Fe(3)O(4) on the removal of ammonium by zeolite NaA was investigated by varying the Fe(3)O(4) loading, pH, adsorption temperature, initial concentration, adsorption time. Langmuir, Freundlich, and pseudo-second-order modeling were used to describe the nature and mechanism of ammonium ion exchange using both zeolite and magnetic zeolite. Thermodynamic parameters such as change in Gibbs free energy, enthalpy and entropy were calculated. The results show that all the selected factors affect the ammonium ion exchange by zeolite and magnetic zeolite, however, the added Fe(3)O(4) apparently does not affect the ion exchange performance of zeolite to the ammonium ion. Freundlich model provides a better description of the adsorption process than Langmuir model. Moreover, kinetic analysis indicates the exchange of ammonium on the two materials follows a pseudo-second-order model. Thermodynamic analysis makes it clear that the adsorption process of ammonium is spontaneous and exothermic. Regardless of kinetic or thermodynamic analysis, all the results suggest that no considerable effect on the adsorption of the ammonium ion by zeolite is found after the addition of Fe(3)O(4). According to the results, magnetic zeolite NaA can be used for the removal of ammonium due to the good adsorption performance and easy separation method from aqueous solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.