Multilevel cervical corpectomy has raised the concern among surgeons that reconstruction with the anterior cervical screw plate system (ACSPS) alone may fail eventually. As an alternative, the anterior cervical transpedicular screw (ACTPS) has been adopted in clinical practice. We used the finite element analysis to investigate whether ACTPS is a more reasonable choice, in comparison with ACSPS, after a 2-level corpectomy in the subaxial cervical spine. These 2 types of implantation models with the applied 75 N axial pressure and 1 N • m pure moment of the couple were evaluated. Compared with the intact model, the range of motion (ROM) at the operative segments (C4–C7) decreased by 97.5% in flexion-extension, 91.3% in axial rotation, and 99.3% in lateral bending in the ACTPS model, whereas it decreased by 95.1%, 73.4%, 96.9% in the ACSPS model respectively. The ROM at the adjacent segment (C3/4) in the ACTPS model decreased in all motions, while that of the ACSPS model increased in axial rotation and flexion-extension compared with the intact model. Compared to the ACSPS model, whose stress concentrated on the interface between the screws and the titanium plate, the stress of the ACTPS model was well-distributed. There was also a significant difference between the maximum stress value of the 2 models. ACTPS and ACSPS are biomechanically favorable. The stability in reducing ROM of ACTPS may be better and the risk of failure for internal fixator is relatively low compared with ACSPS fixation except for under lateral bending in reconstruction the stability of the subaxial cervical spine after 2-level corpectomy.
Objective. The aim of this study is to design a weighted co-expression network and build gene expression signature-based nomogram (GESBN) models for predicting the likelihood of bone metastasis in breast cancer (BC) patients. Methods. Dataset GSE124647 was used as a training set, while GSE16446, GSE45255, and GSE14020 were taken as validation sets. In the training cohort, the limma package in R was adopted to obtain differentially expressed genes (DEGs) between BC nonbone metastasis and bone metastasis patients, which were used for functional enrichment analysis. After weighted co-expression network analysis (WGCNA), univariate Cox regression and Kaplan–Meier plotter analyses were performed to screen potential prognosis-related genes. Then, GESBN models were constructed and evaluated. The prognostic value of the GESBN models was investigated in the GSE124647 dataset, which was validated in GSE16446 and GSE45255 datasets. Further, the expression levels of genes in the models were explored in the training set, which was validated in GSE14020. Finally, the expression and prognostic value of hub genes in BC were explored. Results. A total of 1858 DEGs were obtained. The WGCNA result showed that the blue module was most significantly related to bone metastasis and prognosis. After survival analyses, GAJ1, SLC24A3, ITGBL1, and SLC44A1 were subjected to construct a GESBN model for overall survival (OS). While GJA1, IGFBP6, MDFI, TGFBI, ANXA2, and SLC24A3 were subjected to build a GESBN model for progression-free survival (PFS). Kaplan–Meier plotter and receiver operating characteristic analyses presented the reliable prediction ability of the models. Cox regression analysis further revealed that GESBN models were independent prognostic predictors for OS and PFS in BC patients. Besides, GJA1, IGFBP6, ITGBL1, SLC44A1, and TGFBI expressions were significantly different between the two groups in GSE124647 and GSE14020. The hub genes had a significant impact on patient prognosis. Conclusion. Both the four-gene signature and six-gene signature could accurately predict patient prognosis, which may provide novel treatment insights for BC bone metastasis.
ObjectiveTo compare the differences in the correction effect for lumbosacral lordosis and clinical outcomes between OLIF with/without posterior pedicle screw fixation (PSF) and MIS-TLIF through a retrospective cohort study.MethodThere were 98 consecutive patients originally enrolled for the study, but 15 patients were excluded due to intraoperative endplate injury or osteotomy performed for severe spinal deformity. Thus, 83 patients included in this study (36 males and 47 females, mean age 65.8 years) underwent single to three-segment OLIF (including OLIF + PSF and OLIF Standalone) or MIS-TLIF surgery from 2016 to 2018. The operation time, bleeding and blood transfusion, fusion rate, complication, pre-and postoperative visual analogue scale (VAS), Oswestry Disability Index (ODI) were evaluated. In addition, radiological parameters including lumbosacral lordosis (LL), fused segment lordosis (FSL), anterior disc height (ADH) and posterior disc height (PDH) were measured. The clinical outcomes, LL, FSL, ADH and PDH restored and were compared between the OLIF group, OLIF subgroups and MIS-TLIF group.ResultsThe average operation time and intraoperative bleeding were significantly less in the OLIF group than in the MIS-TLIF group (163 ± 68 vs. 233 ± 79 min, 116 ± 148 vs. 434 ± 201 ml, P < 0.001). There was no statistically significant difference between the OLIF group and the MIS-TLIF group in VAS and ODI improvements, fusion rate, complication, LL and FSL correction (P > 0.05). The ADH and PDH increases in the OLIF group were more than that in MIS-TLIF group (P < 0.001). The correction of LL was significantly more in the OLIF + PSF group than in the MIS-TLIF group (9.9 ± 11.1 vs. 4.2 ± 6.1deg, P = 0.034).ConclusionOLIF and MIS-TLIF are both safe and effective procedures, capable of restoring lumbosacral lordosis and disc height partly. Combined with PSF, OLIF can achieve a better correction effect of lumbosacral lordosis than MIS-TLIF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.