A series of novel tetramic acid derivatives, 5-sec-butyl-3-(1-substitutedamino)ethylidene-1H-pyrrolidine-2,4-diones 5a-y were synthesized by reaction with aryl amines or alkyl amines under reflux. Each title compound was formed as (5S,6S) and (5R,6S) C-5 epimers, and the structure of 5l was proved by X-ray diffraction analysis. Our preliminary bioassay results show the title compounds to exhibit some herbicidal activities and better antifungal activities than the leading compound tenuazonic acid at 100 mg L -1 in vitro, and the compound 5u displayed excellent herbicidal activity and antifungal activity.
In this paper, the gradient anechoic coating whose density changes exponentially along direction of thickness is investigated. A numerical model is established by finite element method (FEM) to analyze the underwater sound absorption performance under different density distribution. The calculation results show that the exponential anechoic coating has better sound absorption performance compared with the homogeneous medium and linear anechoic coating. In addition, a discrete layered method is proposed to achieve gradient characteristics. In order to change the equivalent density of each layer, periodically distributed semi-cylindrical steel scatterers with different diameters are embedded in each layer. Therefore, the density function of the whole coating changes in exponential gradient with stepped function. Based on the sound absorption mechanism of multiple scattering and waveform conversion, the sound absorption is improved in low-frequency band from 0 Hz to 1000 Hz. The exponential gradient anechoic coating has potential applications in underwater sound absorption and vibration control.
Exhaust noise produced by internal combustion engines is one of the main problems of vehicle noise, and exhaust mufflers can significantly improve this problem. In fact, the sound waves inside the exhaust muffler will cause the muffler shell to vibrate, causing the muffler to produce shell radiation noise. Therefore, it is necessary to carry out the acoustic-structure coupling analysis of the muffler. This paper improved the design of a prototype straight-through perforated pipe-resistant muffler (design A) and designed a straight-through perforated pipe-resistant muffler with a corrugated lining (design B). Structural modal analysis, acoustic modal analysis, and transmission loss analysis of the two mufflers were carried out. The coupling of the acoustic cavity and structure was considered, and the radiation noise of two kinds of resistant mufflers was comparatively analyzed by the direct-boundary-element method. The acoustic radiation of two kinds of resistant mufflers was studied. The pressure loss of the two kinds of mufflers was studied by aerodynamic analysis. The results suggested that the design B muffler effectively improved the noise reduction performance of the prototype muffler, reduced the vibration displacement amplitude of the shell, and reduced the sound power level of the design A muffler.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.