Abstract-A minimum Manhattan distance (MMD) approach to multiple criteria decision making in multiobjective optimization problems (MOPs) is proposed. The approach selects the finial solution corresponding with a vector that has the MMD from a normalized ideal vector. This procedure is equivalent to the knee selection described by a divide and conquer approach that involves iterations of pairwise comparisons. Being able to systematically assign weighting coefficients to multiple criteria, the MMD approach is equivalent to a weighted-sum approach. Because of the equivalence, the MMD approach possesses rich geometric interpretations that are considered essential in the field of evolutionary computation. The MMD approach is elegant because all evaluations can be performed by efficient matrix calculations without iterations of comparisons. While the weightedsum approach may encounter an indeterminate situation in which a few solutions yield almost the same weighted sum, the MMD approach is able to determine the final solution discriminately. Since existing multiobjective evolutionary algorithms aim for a posteriori decision making, i.e., determining the final solution after a set of Pareto optimal solutions is available, the proposed MMD approach can be combined with them to form a powerful solution method of solving MOPs. Furthermore, the approach enables scalable definitions of the knee and knee solutions.Index Terms-Divide and conquer (D&C) approach, knee solutions, minimum Manhattan distance approach, multicriteria decision making (MCDM), multiobjective evolutionary algorithms (MOEAs), multiobjective optimization problems (MOPs), multiple attribute decision making (MADM), multiple criteria decision making (MCDM).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.