The present research aimed to elucidate a convenient, safe and economic approach to induce the growth of endogenous bone tissue and bone regeneration. S-UNL-E was prepared using reverse-phase evaporation, and scutellarin encapsulation was subsequently compared. Meanwhile, the optimal preparation scheme was developed using an orthogonal method, and the particle size was determined using laser light scattering. In osteoblasts cultured in vitro, methyl thiazolyl tetrazolium (MTT), alkaline phosphatase (ALP) staining and alizarin red staining were used to detect the osteogenic effects of S-UNL-E. The results indicated that the optimal process conditions for S-UNL-E included mass ratios of phospholipid-cholesterol, phospholipid-breviscapine, phospholipid-sodium cholate, and phospholipid-stearamide were 2:1, 15:1, 7:1 and 7:1, respectively, and the mass of ethylenediamine tetramethylphosphonic acid (EDTMP) was 30 mg. The average particle size of S-UNL-E was 156.67 ± 1.76 nm, and Zeta potential was −28.77 ± 0.66 mv. S-UNL-E substantially increased the expression of ALP osteoblasts, elevated the content of osteocalcin protein and promoted the formation of mineralized nodules. Cells in the S-UNL-E group were densely distributed with integrated cell structure, and the actin filaments were clear and obvious. The findings demonstrated that S-UNL-E greatly promoted the differentiation and maturation of osteoblasts, and S-UNL-E (2.5 × 10 8 ) produced the most favorable effect in differentiation promotion. In conclusion, the present study successfully constructed an S-UNL-E material characterized by high encapsulation and high stability, which could effectively promote osteogenic differentiation and bone formation.
Scutellarin is known as a safe, effective, and low-cost traditional Chinese medicine and has a variety of biological activities. Studies reported that the scutellarin loaded on ultradeformable nanoliposome scutellarin EDTMP (S-UNL-E) could promote osteoblast differentiation and bone formation in vitro. However, its effect on promoting osteogenesis in vivo is still unclear. In this study, pharmacology network and transcriptome sequencing were used to screen the potential targets and pathways of scutellarin in treating osteoporosis. The female Sprague-Dawley (SD) rats were operated on with bilateral oophorectomy and femoral defect to establish an osteoporosis model and then treated separately with bone dust, single scutellarin, 40 mg/kg ultradeformable nanoliposome scutellarin (S-UNL), and the optimal concentration of 40 mg/kg S-UNL-E for a total of 56 d to detect the parameters of trabecular bones. And qRT-PCR and western blot were performed to determine the expression of prostaglandin-endoperoxide synthase 2 (PTGS2), alkaline phosphatase (ALP), transcription factor 4 (TCF4), and β-catenin. Results of microscopic computed tomography (Micro-CT) of trabecular bones showed that single scutellarin, S-UNL, and S-UNL-E all promoted the bone formation of osteoporotic rats, in which S-UNL-E manifested the most remarkable therapeutic effect. And it is found that 40 mg/kg of S-UNL-E increased the expression of PTGS2, ALP, TCF4, and β-catenin, which indicated that S-UNL-E stimulated the secretion of ALP in bone defect areas to promote bone healing, and increased PTGS2 expression thereby enhancing the transcription and translation of key gene β-catenin and TCF4 in the Wnt/β-catenin signaling pathway to treat osteoporotic rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.