Impairment of ribosome biogenesis leads to p53 induction and cell cycle arrest, a checkpoint involved in human disease. Induction of p53 is attributed to the binding and inhibition of human double minute 2 (Hdm2) by a subset of ribosomal proteins (RPs): RPS7, RPL5, RPL11, and RPL23. However, we found that only RPL11 or RPL5, in a mutually dependent manner, elicit this response. We show that depletion of RPS7 or RPL23, like depletion of other RPs, except for RPL11 and RPL5, induces a p53 response and that the effects of RPS7 and RPL23 on p53 induction reported earlier may be ascribed to inhibition of global translation. Moreover, we made the surprising observation that codepletion of two essential RPs, one from each subunit, but not the same subunit, leads to suprainduction of p53. This led to the discovery that the previously proposed RPL11-dependent mechanism of p53 induction, thought to be caused by abrogation of 40S biogenesis and continued 60S biogenesis, is still operating, despite abrogation of 60S biogenesis. This response leads to both a G1 block and a novel G2/M block not observed when disrupting either subunit alone. Thus, induction of p53 is mediated by distinct mechanisms, with the data pointing to an essential role for ribosomal subunits beyond translation.
e Humans have evolved elaborate mechanisms to activate p53 in response to insults that lead to cancer, including the binding and inhibition of Hdm2 by the 60S ribosomal proteins (RPs) RPL5 and RPL11. This same mechanism appears to be activated upon impaired ribosome biogenesis, a risk factor for cancer initiation. As loss of RPL5/RPL11 abrogates ribosome biogenesis and protein synthesis to the same extent as loss of other essential 60S RPs, we reasoned the loss of RPL5 and RPL11 would induce a p53-independent cell cycle checkpoint. Unexpectedly, we found that their depletion in primary human lung fibroblasts failed to induce cell cycle arrest but strongly suppressed cell cycle progression. We show that the effects on cell cycle progression stemmed from reduced ribosome content and translational capacity, which suppressed the accumulation of cyclins at the translational level. Thus, unlike other tumor suppressors, RPL5/RPL11 play an essential role in normal cell proliferation, a function cells have evolved to rely on in lieu of a cell cycle checkpoint.
The PI3K-PDK1-PKB/Akt (PI3K, phosphoinositide-3 kinase; PDK1, phosphoinositide-dependent protein kinase 1; PKB, protein kinase B) signaling pathway plays a critical role in a variety of biological processes including cell survival, growth and proliferation, metabolism and organogenesis. Previously, we generated Akt1-deficient mice and found high neonatal mortality with unknown causes. Here we report that histological analysis of Akt1-deficient embryos and newborns revealed heart defects and decreased cell proliferation. Echocardiographic study of Akt1-deficient mice indicated decreased heart function. Further investigation revealed that Akt1 deficiency caused substantial activation of p38MAPK in the heart. Breeding the Akt1-deficient mice to mice that were heterozygous for a null p38α partially rescued the heart defects, significantly decreased post-natal mortality, and restored normal patterns of cardiomyocyte proliferation. Our study suggests that Akt1 is essential for heart development and function, in part, through suppression of p38MAPK activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.