Due to limited backhaul/feedback link capacity and channel state information (CSI) feedback delay, obtaining global and instantaneous channel state information at the transmitter (CSIT) is a main obstacle in practice. In this paper, novel transmission schemes are proposed for a class of interference networks that can achieve new trade-off regions between the sum of degrees of freedom (sum-DoF) and CSI feedback delay with distributed and temperately-delayed CSIT. More specifically, a distributed spacetime interference alignment (STIA) scheme is proposed for the two-user multiple-input multiple-output (MIMO) X channel via a novel precoding method called Cyclic Zero-padding. The achieved sum-DoFs herein for certain antenna configurations are greater than the best known sum-DoFs in literature with delayed CSIT. Furthermore, we propose a distributed retrospective interference alignment (RIA) scheme that achieves more than 1 sum-DoF for the K-user single-input single-output (SISO) X network. Finally, we extend the distributed STIA to the MˆN user multiple-input single-output (MISO) X network where each transmitter has N´1 antennas and each receiver has a single antenna, yielding the same sum-DoF as that in the global and instantaneous CSIT case. The discussion and the result of the MISO X network can be extended to the MIMO case due to spatial scale invariance property.
Index TermsDegrees of freedom (DoF), distributed CSIT, retrospective interference alignment (RIA), space-time interference alignment (STIA), X network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.