Tourette syndrome (TS), a developmental neurobehavioral disorder, is characterized by involuntary behavioral stereotypies. Clinical studies have confirmed the positive effect of acupuncture on treating TS, but the underlying mechanisms are not fully understood. In the present study, we used behavioral tests, Western blotting, double-immunofluorescence labeling, and fluorescence spectrophotometry to investigate whether acupuncture performed at acupoints “Baihui” (GV20) and “Yintang” (GV29) affected behavioral stereotypies and regulated the dopamine (DA) system in three different brain regions in Balb/c mice injected with 3,3′-iminodipropionitrile (IDPN) as a model for TS. We found that acupuncture alleviated behavioral stereotypies, down-regulated the expression of D1R and D2R in the striatum (STR) and substantia nigra pars compacta (SNpc), and decreased the concentration of DA in the STR, SNpc, and prefrontal cortex (PFC) as well. Moreover, acupuncture reduced the expression of tyrosine hydroxylase (TH) in the SNpc. Conclusively, acupuncture ameliorated behavioral stereotypies by regulating the DA system in the STR, SNpc, and PFC. Our findings provide novel evidence for the therapeutic effect of acupuncture on TS.
To investigate the involvement of peripheral adenosine receptors in the effect of electroacupuncture (EA) on visceral pain in mice with inflammatory bowel disease (IBD). 2,4,6-Trinitrobenzene sulfonic acid (TNBS) was used to induce the visceral pain model. EA (1 mA, 2 Hz, 30 min) treatment was applied to bilateral acupoints BDachangshu^(BL25) 1 day after TNBS injection once daily for 7 consecutive days. Von Frey filaments were used to measure the mechanical pain threshold. Western blot was used to detect the protein expression levels of adenosine 1 receptor (A1R), adenosine 2a receptor (A2aR), adenosine 2b receptor (A2bR), adenosine 3 receptor (A3R), substance P (SP), and interleukin 1 beta (IL-1β) in colon tissue. EA significantly ameliorated the disease-related indices and reduced the expression of SP and IL-1β in the colon tissues of mice with IBD. EA increased the expression of A1R, A2aR, and A3R and decreased the expression of A2bR in the colon tissue. Furthermore, the administration of adenosine receptor antagonists influenced the effect of EA. EA can inhibit the expression of the inflammatory factors SP and IL-1β by regulating peripheral A1, A2a, A2b, and A3 receptors, thus inhibiting visceral pain in IBD mice.
The therapeutic effects of electroacupuncture (EA) on the comorbidity of visceral pain and anxiety in patients with inflammatory bowel disease (IBD) is well known. It has been known that the ventral hippocampus (vHPC) and the cannabinoid type 1 receptors (CB1R) are involved in regulating anxiety and pain. Therefore, in this study, we determined whether EA reduces visceral pain and IBD-induced anxiety via CB1R in the vHPC. We found that EA alleviated visceral hyperalgesia and anxiety in TNBS-treated IBD mice. EA reversed over-expression of CB1R in IBD mice and decreased the percentage of CB1R-expressed GABAergic neurons in the vHPC. Ablating CB1R of GABAergic neurons in the vHPC alleviated anxiety in TNBS-treated mice and mimicked the anxiolytic effect of EA. While ablating CB1R in glutamatergic neurons in the vHPC induced severe anxiety in wild type mice and inhibited the anxiolytic effect of EA. However, ablating CB1R in either GABAergic or glutamatergic neurons in the vHPC did not alter visceral pain. In conclusion, we found CB1R in both GABAergic neurons and glutamatergic neurons are involved in the inhibitory effect of EA on anxiety but not visceral pain in IBD mice. EA may exert anxiolytic effect via downregulating CB1R in GABAergic neurons and activating CB1R in glutamatergic neurons in the vHPC, thus reducing the release of glutamate and inhibiting the anxiety circuit related to vHPC. Thus, our study provides new information about the cellular and molecular mechanisms of the therapeutic effect of EA on anxiety induced by IBD.
As tourette syndrome (TS) is a common neurobehavioral disorder, the primary symptoms of which include behavioral stereotypies. Dysfunction of the substantia nigra–striatum network could be the main pathogenesis of TS, which is closely associated with dopamine (DA) and its receptors. TS is often resistant to conventional treatments. Therefore, it is necessary to investigate the neurobiological mechanisms underlying its pathogenesis. In this study, we investigated whether chemogenetic activation or inhibition of dopaminergic D1 receptor (D1R)- or D2 receptor (D2R)-containing neurons in the substantia nigra pars compacta (SNpc) or dorsal striatum (dSTR) affected the stereotyped behavior and motor functions of TS mice. Intraperitoneal injection of 3,3′-iminodipropionitrile (IDPN) was used to induce TS in mice. Stereotyped behavior test and open-field, rotarod, and grip strength tests were performed to evaluate stereotyped behavior and motor functions, respectively. Immunofluorescence labeling was used to detect the co-labeling of virus fluorescence and D1R or D2R. We found that chemogenetic inhibition of D1R- or D2R-containing neurons in the SNpc and dSTR alleviated behavioral stereotypies and motor functions in TS mice. Chemogenetic activation of D1R-containing neurons in the dSTR aggravated behavioral stereotypies and motor functions in vehicle-treated mice, but neither was aggravated in TS mice. In conclusion, chemogenetic inhibition of D1R- or D2R-containing neurons in the SNpc and dSTR alleviated behavioral stereotypies of TS, providing a new treatment target for TS. Moreover, the activation of D1R-containing neurons in the dSTR may contribute to the pathogenesis of TS, which can be chosen as a more precise target for treatment.
Objective Tourette syndrome (TS) is a common neurological disorder characterized by behavioral stereotypies. Acupuncture has been found to improve stereotypical behavior in a clinical setting, but its mechanism remains unclear. The main pathogenesis of TS may result from the dysfunction of the dopamine (DA) system in the substantia nigra-striatal network. Moreover, endocannabinoids have therapeutic effects on TS by activating the CB1 receptors (CB1R). Methods In this study, we determined the optimal acupuncture treatment for TS. Further, we investigated whether CB1R could mediate the effects of acupuncture treatment on behavioral stereotypies of TS and regulate the concentration of DA in substantia nigra pars compacta (SNpc) and the dorsal striatum (dSTR). Results We found that both manual acupuncture and low-frequency electroacupuncture alleviated involuntary behavioral stereotypies in TS model mice, decreased the concentration of DA in the SNpc and dSTR, and increased CB1R expression in dopaminergic neurons in the SNpc. Targeted knockout of CB1R in dopaminergic neurons projecting from SNpc to dSTR reversed the effects of acupuncture. Conclusion Our results support that CB1R in dopaminergic neurons projecting from SNpc to dSTR is involved in acupuncture treatment to alleviate stereotypical behavior in TS model mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.