Using high temporal and high spatial resolution observations taken by the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory, we present the detailed observational analysis of a high quality quasi-periodic fastpropagating (QFP) magnetosonic wave that was associated with the eruption of a magnetic flux rope and a GOES C5.0 flare. For the first time, we find that the QFP wave lasted during the entire flare lifetime rather than only the rising phase of the accompanying flare as reported in previous studies. In addition, the propagation of the different parts of the wave train showed different kinematics and morphologies. For the southern (northern) part, the speed, duration, intensity variation are about 875 ± 29 (1485 ± 233) km s −1 , 45 (60) minutes, and 4% (2%), and the pronounced periods of them are 106 ± 12 and 160 ± 18 (75 ± 10 and 120 ± 16) seconds, respectively. It is interesting that the northern part of the wave train showed obvious refraction effect when they pass through a region of strong magnetic field. Periodicity analysis result indicates that all the periods of the QFP wave can be found in the period spectrum of the accompanying flare, suggesting their common physical origin. We propose that the quasi-periodic nonlinear magnetohydrodynamics process in the magnetic reconnection that produces the accompanying flare should be important for exciting of QFP wave, and the different magnetic distribution along different paths can account for the different speeds and morphology evolution of the wave fronts.
We installed two sets of Astronomical Site Monitoring Systems (ASMSs) at Lijiang Observatory (GMG), for the running of the 2.4-meter Lijiang optical telescope (LJT) and the 1.6-meter Multi-channel Photometric Survey Telescope (Mephisto). The Mephisto is under construction. The ASMS has been running on robotic mode since 2017. The core instruments: Cloud Sensor, All-Sky Camera and Autonomous-DIMM that are developed by our group, together with the commercial Meteorological Station and Sky Quality Meter, are combined into the astronomical optical site monitoring system. The new Cloud Sensor’s Cloud-Clear Relationship is presented for the first time, which is used to calculate the All-Sky cloud cover. We designed the Autonomous-DIMM located on a tower, with the same height as LJT. The seeing data have been observed for a full year. ASMS’s data for the year 2019 are also analysed in detail, which are valuable to observers.
The observational analysis is performed to study the excitation mechanism and the propagation properties of a quasi-periodic fast-propagating (QFP) magnetosonic wave. The QFP wave was associated with the eruption of a nearby mini-filament and a small B4 GOES flare, which may indicate that the generation of a QFP wave do not need too much flare energy. The propagation of the QFP wave was along a bundle of funnelshaped open loops with a speed of about 1100 ± 78 km s −1 , and an acceleration of -2.2 ± 1.1 km s −2 . Periodicity analysis indicates that the periods of the QFP wave are 43 ± 6, 79 ± 18 second. For the first time, we find that the periods of the QFP wave and the accompanying flare are inconsistent, which is different from the findings as reported in previous studies. We propose that the present QFP wave was possibly caused by the mechanism of dispersive evolution of an initially broadband disturbance resulted from the nearby mini-filament eruption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.