The aim of this study was to compare various formulations solid dispersion pellets (SDP), nanostructured lipid carriers (NLCs) and a self-microemulsifying drug delivery system (SMEDDS) generally accepted to be the most efficient drug delivery systems for BCS II drugs using fenofibrate (FNB) as a model drug. The size and morphology of NLCs and SMEDDS was characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Their release behaviors were investigated in medium with or without pancreatic lipase. The oral bioavailability of the various formulations was compared in beagle dogs using commercial Lipanthyl® capsules (micronized formulation) as a reference. The release of FNB from SDP was much faster than that from NLCs and SMEDDS in medium without lipase, whereas the release rate from NLCs and SMEDDS was increased after adding pancreatic lipase into the release medium. However, NLCs and SMEDDS increased the bioavailability of FNB to 705.11% and 809.10%, respectively, in comparison with Lipanthyl® capsules, although the relative bioavailability of FNB was only 366.05% after administration of SDPs. Thus, lipid-based drug delivery systems (such as NLCs and SMEDDS) may have more advantages than immediate release systems (such as SDPs and Lipanthyl® capsules).
A variety of nanoscale delivery systems have been shown to enhance the oral absorption of poorly water-soluble and poorly permeable drugs. However, the performance of these systems has seldom been evaluated simultaneously. The aim of this study was to compare the bioavailability enhancement effect of lipid-based nanocarriers with poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) to highlight the importance of the lipid composition, with cyclosporine A (CyA) as a model drug. CyA-loaded PLGA NPs, nanostructured lipid carriers (NLCs), and self-microemulsifying drug-delivery systems (SMEDDS) were prepared. The particle size of PLGA NPs (182.2±12.8 nm) was larger than that of NLCs (89.7±9.0 nm) and SMEDDS (26.9±1.9 nm). All vehicles are charged negatively. The entrapment efficiency of PLGA NPs and NLCs was 87.6%±1.6% and 80.3%±0.6%, respectively. In vitro release tests indicated that the cumulative release of CyA was lower than 4% from all vehicles, including Sandimmun Neoral
®
, according to the dialysis method. Both NLCs and SMEDDS showed high relative oral bioavailability, 111.8% and 73.6%, respectively, after oral gavage administration to beagle dogs, which was not statistically different from commercial Sandimmun Neoral
®
. However, PLGA NPs failed to achieve efficient absorption, with relative bioavailability of about 22.7%. It is concluded that lipid-based nanoscale drug-delivery systems are superior to polymeric NPs in enhancing oral bioavailability of poorly water-soluble and poorly permeable drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.