The kinetics of formation of crystal boron was studied by X-ray structure and differential-thermal analyses. The enthalpy of transition of amorphous boron to crystal boron with formation of an intermediate non-equilibrium phase was determined by the calorimetric method. Studies were carried out by using the differential scanning calorimeter SETARAM. Amorphous boron received by diboron cracking was used as the starting material. The test sample is characterized by stability even at a high temperature. When heated, amorphous boron first transforms to crystal boron of α-modification, and during a further heating, there occur several phase transitions, which means the transition of α-rhombohedric crystal boron to the βʹ and βʺ metastable states. Studies of various modifications were carried out by radiographic and electro-optic methods. The high sensitiveness of the calorimeter made it possible to control temperature in the oven, make records and detect even the smallest thermal effects.
The aim of the presented investigation is the development of technology for production of novel, halogen-free, environmentally safe, highly efficient fire-extinguishing powders based on local mineral raw materials, which does not require modification with expensive, halogen-inclusive, hydrofobizing additives, providing low-cost production of fire-extinguishing powders in comparison with imported analogues. The optimal dispersity was selected in such way, that caking capacity be minimal and a homogeneous action of combustion products on the flame as well as a heterogeneous inhibition of combustion process must take place. The evaluation of powder efficiency is carried out with consideration of the both effects. Experimental data confirm that the developed fire-extinguishing powders are characterized with high performance characteristics, as well as high fire-extinguishing capacity. At the same time, it should be noted, that the efficiency of the obtained powders is practically the same as of standard imported powders, but do not contain any halogens, is environmentally safe and 1.5-2 times cheaper than the imported analogues. For obtained powders, the conditions of extinguish optimum and effective use of powder are stated. Optimum extinguishing condition means the selection of optimum intensity of powder supply into seat of fire when minimum consumption of powder provides fire extinguishing in minimum time. Thus, in order to determine optimum conditions of extinguishing it is necessary to study the dependence of powder specific consumption and extinguishing time to supply intensity. For our powders optimum condition of extinguish is: powder supply intensity I-0.6-1.0 kg/m 2 sec to fire center when powder specific consumption does not exceed G=0.8-1.2 kg/m 2. Therefore, we can assume that the use of fire-extinguishing powders of our preparation is possible at extinguishing all types of fires over ground, as well as, underground constructions and does not need additional antiseptic measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.