Nowadays, underwater image identification is a challenging task for many researchers focusing on various applications, such as tracking fish species, monitoring coral reef species, and counting marine species. Because underwater images frequently suffer from distortion and light attenuation, pre-processing steps are required in order to enhance their quality. In this paper, we used multiple edge detection techniques to determine the edges of the underwater images. The pictures were pre-processed with the use of specific techniques, such as enhancement processing, Wiener filtering, median filtering and thresholding. Coral reef pictures were used as a dataset of underwater images to test the efficiency of each edge detection method used in the experiment. All coral reef image datasets were captured using an underwater GoPro camera. The performance of each edge detection technique was evaluated using mean square error (MSE) and peak signal to noise ratio (PSNR). The lowest MSE value and the highest PSNR value represent the best quality of underwater images. The results of the experiment showed that the Canny edge detection technique outperformed other approaches used in the course of the project.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.