In this paper, an orthogonal experiment of 3 factors and 3 levels was firstly designed to prepare PAN pre-oxidised fibre felts with good thermal insulation properties; the range method was used to analyse the result of the orthogonal experiment, and finally the tensile properties and thermal stability were tested. Finally, pre-oxidised fibre felt composites for the coating of silica aerogel were prepared using the coating process to compound silica aerogel on re-oxidised fibre felts. Firstly, the influence of the content of silica aerogel on the heat insulation performance of the coated composite materials was analysed, and then a test of the coefficient of thermal conductivity, an experiment on the back temperature, and characterisations of the tensile properties and thermal stability of the composite coating of pre-oxidised fibre felt composites of the coating of silica aerogel were carried out. Results showed that through analysis of the orthogonal experiment, we can state that the best preparation process of pre-oxidised fibre needled felts was as follows: needle number – 2, needle depth – 8 mm, and needle frequency – 140 times/min. The transverse tensile strength of PAN pre-oxidised fibre needled felts prepared by crossly webbing of PAN pre-oxidised fibres was superior to the longitudinal tensile strength; thermogravimetric analysis showed that the pre-oxidised fibre needled felts had excellent thermal stability. The coefficient of thermal conductivity of the aerogel coating of the composites firstly decreased and then increased with an increase in the content of aerogel. Coated composites had the lowest coefficient of thermal conductivity when the aerogel content was 4% wt. At temperatures of 100 °C, 150 °C and 200 °C, the heating rate of the transient-state back temperature and the steady-state average temperature were both the lowest when the aerogel content was 6% wt.
Many factors were needed to be considered to prepare pre-oxidised fibre felts with excellent heat insulation performance, and different production processes showed differences in the heat insulation performance of pre-oxidised fibre felts. In order to probe into the influence of the production process on the heat insulation performance of materials, a large number of experiments were needed to be carried out. For needle-punched nonwoven pre-oxidised fibre felts, web features, needle characteristics and the needle process will all affect the structure of pre-oxidised fibre felts, thus bringing a major influence on the heat insulation performance of pre-oxidised fibre felts. In this paper, the influence of the needle number on the heat insulation performance of pre-oxidised fibre felts was mainly studied. Results showed that an increase in the needle number will cause a decrease in the thickness and gram weight of pre-oxidised fibre felts, and a weakening trend in the heat insulation performance of pre-oxidiaed fibre felts with an increasing needle number at room temperature and at 100-200 °C was shown. Moreover when the needle number was 1 and 2, the pre-oxidised fibre needled felts had good heat insulation performance, and for pre-oxidized fibre felts at different needle numbers with increasing temperature, the temperature difference in a steady state increased linearly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.