Staphylococcus aureus is an important bacterial pathogen causing bovine mastitis, but little is known about the virulence factor and the inflammatory responses in the mammary infection. Staphylococcal enterotoxin C (SEC) is the most frequent toxin produced by S. aureus, isolated from bovine mastitis. To investigate the pathogenic activity of SEC in the inflammation of the mammary gland and the immune responses in an animal model, mouse mammary glands were injected with SEC, and the clinical signs, inflammatory cell infiltration, and proinflammatory cytokine production in the mammary glands were assessed. SEC induced significant inflammatory reactions in the mammary gland, in a dose-dependent manner. SEC-injected mammary glands showed a severe inflammation with inflammatory cell infiltration and tissue damage. In addition, interleukin (IL)-1β and IL-6 production in the SEC-injected mammary glands were significantly higher than those in the PBS control glands. Furthermore, the SEC-induced inflammation and tissue damage in the mammary gland were specifically inhibited by anti-SEC antibody. These results indicated, for the first time, that SEC can directly cause inflammation, proinflammatory cytokine production, and tissue damage in mammary glands, suggesting that SEC might play an important role in the development of mastitis associated with S. aureus infection. This finding offers an opportunity to develop novel treatment strategies for reduction of mammary tissue damage in mastitis.
Spectral and spectral collocation methods for tempered fractional diffusion equations on the real line are developed. Applying the Fourier transform to the problem under consideration, we reduce it to systems of algebraic equations. Since Hermite functions are the eigenfunctions of the Fourier transform, they are used in the construction of spectral and spectral collocation methods for the algebraic equations obtained. The stability and convergence of the methods are studied. Numerical examples demonstrate the efficiency of the algorithms and confirm theoretical findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.