The spaceborne double-pulse integrated-path differential absorption (IPDA) light detection and ranging (LIDAR) system was found to be helpful in observing atmospheric CO2 and understanding the carbon cycle. The airborne experiments of a scale prototype of China’s planned spaceborne IPDA LIDAR was implemented in 2019. A problem with data inversion caused by the detector module nonlinearity was found. Through many experiments, the amplifier circuit board (ACB) of the detector module was proved to be the main factor causing the nonlinearity. Through amplifier circuit optimization, the original bandwidth of the ACB was changed to 1 MHz by using a fifth-order active filter. Compared with the original version, the linearity of optimized ACB is improved from 42.6% to 0.0747%. The optimized ACB was produced and its linearity was verified by experiments. In addition, the output waveform of the optimized ACB changes significantly, which will affect the random error (RE) of the optimized IPDA LIDAR system. Through the performance simulation, the RE of more than 90% of the global area is less than 0.728 ppm. Finally, the transfer model of the detector module was given, which will be helpful for the further optimization of the CO2 column-averaged dry-air mixing ratio (XCO2) inversion algorithm.
The laser heterodyne radiometer (LHR) has the advantages of miniaturization, low cost, and high spectral-resolution as a ground-verification instrument for satellite observation of atmospheric trace-gas concentration. To verify the accuracy of LHR measurements, a new performance evaluation method is presented here, based on an ASE source and a CO2 absorption cell in the laboratory. Preliminary simulation analysis based on the system parameters of LHR is carried out for the performance analysis and data processing of this new combined test system. According to the simulation results, at wavelength deviation of fewer than 30 MHz, the retrieval error, which increases with bandwidth, can obtain an accuracy of 1 ppm within the bandwidth range of the photodetector (1.2 GHz) when this instrument line shape (ILS) is calibrated. Meanwhile, when the filter bandwidth is less than 200 MHz, the maximum error without ILS correction does not exceed 0.07 ppm. Moreover, with an ideal 60 MHz bandpass filter without ILS correction, LHR’s signal-to-noise ratio (SNR) should be greater than 20 to achieve retrieval results of less than 1 ppm. When the SNR is 100, the retrieval error is 0.206 and 0.265 ppm, corresponding to whether the system uncertainties (temperature and pressure) are considered. Considering all the error terms, the retrieval error (geometrically added) is 0.528 ppm at a spectral resolution of 0.004 cm−1, which meets the measurement accuracy requirement of 1 ppm. In the experiment, the retrieval and analysis of the heterodyne signals are performed for different XCO2 with [400 ppm, 420 ppm] in the absorption cell. Experimental results match well with the simulation, and confirm the accuracy of LHR with an error of less than 1 ppm with an SNR of 100. The LHR will be used to measure atmospheric-CO2 column concentrations in the future, and could be effective validation instruments on the ground for spaceborne CO2-sounding sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.