In the paper, joint angle and range estimation issue for monostatic frequency diverse array multiple-input multiple-output (FDA-MIMO) is proposed, and a tensor-based framework is addressed to solve it. The proposed method exploits the multidimensional structure of matched filters in FDA-MIMO radar. Firstly, stack the received data to form a third-order tensor so that the multidimensional structure information of the received data can be acquired. Then, the steering matrices contain the angle and rang information are estimated by using the parallel factor (PARAFAC) decomposition. Finally, the angle and range are achieved by utilizing the phase characteristic of the steering matrices. Due to exploiting the multidimensional structure of the received data to further suppress the effect of noise, the proposed method performs better in angle and range estimation than the existing algorithms based on ESPRIT, simulation results can prove the proposed method’s effectiveness.
Frequency diverse array (FDA) radar has attracted much attention due to the angle and range dependence of the beam pattern. Multiple-input-multiple-output (MIMO) radar has high degrees of freedom (DOF) and spatial resolution. The FDA-MIMO radar, a hybrid of FDA and MIMO radar, can be used for target parameter estimation. This paper investigates a tensor-based reduced-dimension multiple signal classification (MUSIC) method, which is used for target parameter estimation in the FDA-MIMO radar. The existing subspace methods deteriorate quickly in performance with small samples and a low signal-to-noise ratio (SNR). To deal with the deterioration difficulty, the sparse estimation method is then proposed. However, the sparse algorithm has high computation complexity and poor stability, making it difficult to apply in practice. Therefore, we use tensor to capture the multi-dimensional structure of the received signal, which can optimize the effectiveness and stability of parameter estimation, reduce computation complexity and overcome performance degradation in small samples or low SNR simultaneously. In our work, we first obtain the tensor-based subspace by the high-order-singular value decomposition (HOSVD) and establish a two-dimensional spectrum function. Then the Lagrange multiplier method is applied to realize a one-dimensional spectrum function, estimate the direction of arrival (DOA) and reduce computation complexity. The transmitting steering vector is obtained by the partial derivative of the Lagrange function, and automatic pairing of target parameters is then realized. Finally, the range can be obtained by using the least square method to process the phase of transmitting steering vector. Method analysis and simulation results prove the superiority and reliability of the proposed method.
Edge computing has a wide range of applications in the Internet of Things (IoT), especially suitable for low latency, high bandwidth, and high reliability. Edge computing enabling IoT can locate the vehicles rapidly with the help of edge computing. The sensors of IoTs can construct the Frequency diverse array (FDA) radar system, which has been widely concerned by scholars in recent years. The monostatic FDA and multiple-input-multiple-output (FDA-MIMO) is a research hotspot in parameter estimation field, but the research based on bistatic FDA-MIMO radar is insufficient. In this paper, we propose a tensorbased target location method in bistatic FDA-MIMO radar, which implements joint direction of arrival (DOA), direction of departure (DOD) and range parameters estimation. First of all, subarrays with different transmission frequency increment are used to construct the transmitting array to overcome the coupling between DOD and range. Then the tensor-based third-order signal model is established, which saves the multidimensional structure characteristics of received signal. And the signal subspace of each subarray is estimated by high-order-singular value decomposition (HOSVD). Furthermore, the phase period ambiguity is eliminated by limiting the range of the target, and the method for DOA, DOD and range parameters matching is provided. Theoretical analysis and numerical simulations demonstrate the effectiveness and superiority of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.