Microorganisms associated with termites are an original resource for identifying new chemical scaffolds or active metabolites. A molecular network was generated from a collection of strain extracts analyzed by liquid chromatography coupled to tandem high-resolution mass spectrometry, a molecular network was generated, and activities against the human pathogens methicillin-resistant Staphylococcus aureus, Candida albicans and Trichophyton rubrum were mapped, leading to the selection of a single active extract of Penicillium sclerotiorum SNB-CN111. This fungal species is known to produce azaphilones, a colorful family of polyketides with a wide range of biological activities and economic interests in the food industry. By exploring the molecular network data, it was shown that the chemical diversity related to the P. sclerotiorum metabolome largely exceeded the data already reported in the literature. According to the described fragmentation pathways of protonated azaphilones, the annotation of 74 azaphilones was proposed, including 49 never isolated or synthesized thus far. Our hypothesis was validated by the isolation and characterization of eight azaphilones, among which three new azaphilones were chlorogeumasnol (63), peniazaphilone E (74) and 7-deacetylisochromophilone VI (80).
We gathered a collection of termite mutualistic strains from French Guiana to explore the metabolites of symbiotic microorganisms. Molecular networks reconstructed from a metabolomic analysis using LC–ESI–MS/MS methodology led us to identify two families of chlorinated polyketides, i.e., azaphilones from Penicillium sclerotiorum and ilicicolins from Neonectria discophora. To define the biosynthetic pathways related to these two types of scaffolds, we used a whole genome sequencing approach followed by hybrid assembly from short and long reads. We found two biosynthetic gene clusters, including two FAD-dependent halogenases. To exploit the enzymatic promiscuity of the two identified FAD halogenases, we sought to biosynthesize novel halogenated metabolites. An OSMAC strategy was used and resulted in the production of brominated analogs of ilicicolins and azaphilones as well as iodinated analogs of azaphilones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.