A new method of preventing slopping is proposed in this paper, by simply blowing gas at the top of the foam surface. The physical experiment results show that the foam height can be effectively decreased by the top blowing air. The maximum decrease of the foam height can reach around 70 mm with an initial foam height of 145 mm in the current setup, around a 48% decrease. The first 40 mm of the foam height is easy to destroy with a low flow rate from the top. However, it is increasingly difficult for a further decrease in the foam height. Different types of nozzles show a large difference in the role of destroying the foam. The air flow velocity from the nozzle outlet is found to be the key factor for a decreased foam height. Overall, three foam destruction mechanisms are proposed. When the top air flow velocity is small, the drag and pressure destruction mechanisms are the main reasons for the decrease in foam height. However, when a large top air flow velocity is used, the coalescence and breakup mechanisms due to a high turbulence and the shear force on gas bubble shape deformation become important.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.