Recently, numerous side effects of synthetic drugs have lead to using medicinal plants as a reliable source of new therapy. Pain is a global public health problem with a high impact on life quality and a huge economic implication, becoming one of the most important enemies in modern medicine. The medicinal use of plants as analgesic or antinociceptive drugs in traditional therapy is estimated to be about 80% of the world population. The Lamiaceae family, one of the most important herbal families, incorporates a wide variety of plants with biological and medical applications. In this study, the analgesic activity, possible active compounds of Lamiaceae genus, and also the possible mechanism of actions of these plants are presented. The data highlighted in this review paper provide valuable scientific information for the specific implications of Lamiaceae plants in pain modulation that might be used for isolation of potentially active compounds from some of these medicinal plants in future and formulation of commercial therapeutic agents.
Background
Colorectal cancer is a successful model of genetic biomarker development in oncology. Currently, several predictive or prognostic genetic alterations have been identified and are used in clinical practice. The RAS gene family, which includes KRAS and NRAS act as predictors for anti-epithelial growth factor receptor treatment (anti-EGFR), and it has been suggested that NRAS mutations also play a role in prognosis: patients harboring NRAS alterations have a significantly shorter survival compared to those with wild type tumours. BRAF V600E mutations are rare and occur mostly in tumors located in the ascending colon in elderly female patients. BRAF is instrumental in establishing prognosis: survival is shorter by 10–16 months in BRAF-mutant patients, and BRAF may be a negative prognostic factor for patients who undergo hepatic or pulmonary metastasectomy. Moreover, this mutation is used as a negative predictive factor for anti-EGFR therapies. Two new biomarkers have recently been added to the metastatic colorectal cancer panel: HER2 and microsatellite instability. While HER2 is still being investigated in different prospective studies in order to validate its prognostic role, microsatellite instability already guides clinical decisions in substituted with advanced colorectal cancer.
Conclusions
There are current evidences that support using above mentioned genetic biomarkers to better identify the right medicine that is supposed to be used in the right patient. This approach contributes to a more individualized patient-oriented treatment in daily clinical practice.
The Terahertz’s wavelength is located between the microwave and the infrared region of the electromagnetic spectrum. Because it is non-ionizing and non-invasive, Terahertz (THz)-based detection represents a very attractive tool for repeated assessments, patient monitoring, and follow-up. Cancer acts as the second leading cause of death in many regions, and current predictions estimate a continuous increasing trend. Of all types of tumors, digestive cancers represent an important percentage and their incidence is expected to increase more rapidly than other tumor types due to unhealthy lifestyle habits. Because it can precisely differentiate between different types of molecules, depending on water content, the information obtained through THz-based scanning could have several uses in the management of cancer patients and, more importantly, in the early detection of different solid tumors. The purpose of this manuscript is to offer a comprehensive overview of current data available on THz-based detection for digestive cancers. It summarizes the characteristics of THz waves and their interaction with tissues and subsequently presents available THz-based technologies (THz spectroscopy, THz-tomography, and THZ-endoscope) and their potential for future clinical use. The third part of the review is focused on highlighting current in vitro and in vivo research progress in the field, for identifying specific digestive cancers known as oral, esophageal, gastric, colonic, hepatic, and pancreatic tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.