Real world quantum systems are open to perpetual influence from the wider environment. Quantum gravitational fluctuations provide a most fundamental source of the environmental influence through their universal interactions with all forms of energy and matter causing decoherence. This may have subtle implications on precision laboratory experiments and astronomical observations and could limit the ultimate capacities for quantum technologies prone to decoherence. To establish the essential physical mechanism of decoherence under weak spacetime fluctuations, we carry out a sequence of analytical steps utilizing the Dirac constraint quantization and gauge invariant influence functional techniques resulting in a general master equation of a compact form that describes an open quantum gravitational system with arbitrary bosonic fields. An initial application of the theory is illustrated by the implied quantum gravitational dissipation of light as well as (non)relativistic massive or massless scalar particles. Related effects could eventually lead to important physical consequences including those on a cosmological scale and for a large number of correlated particles.
We carry out a theoretical investigation on the collective dynamics of an ensemble of correlated atoms, subject to both vacuum fluctuations of spacetime and stochastic gravitational waves. A general approach is taken with the derivation of a quantum master equation capable of describing arbitrary confined nonrelativistic matter systems in an open quantum gravitational environment. It enables us to relate the spectral function for gravitational waves and the distribution function for quantum gravitational fluctuations and to indeed introduce a new spectral function for the zeropoint fluctuations of spacetime. The formulation is applied to two-level identical bosonic atoms in an off-resonant high-Q cavity that effectively inhibits undesirable electromagnetic delays, leading to a gravitational transition mechanism through certain quadrupole moment operators. The overall relaxation rate before reaching equilibrium is found to generally scale collectively with the number N of atoms. However, we are also able to identify certain states of which the decay and excitation rates with stochastic gravitational waves and vacuum spacetime fluctuations amplify more significantly with a factor of N 2 . Using such favourable states as a means of measuring both conventional stochastic gravitational waves and novel zero-point spacetime fluctuations, we determine the theoretical lower bounds for the respective spectral functions. Finally, we discuss the implications of our findings on future observations of gravitational waves of a wider spectral window than currently accessible. Especially, the possible sensing of the zero-point fluctuations of spacetime could provide an opportunity to generate initial evidence and further guidance of quantum gravity.
We develop a general framework for the open dynamics of an ensemble of quantum particles subject to spacetime fluctuations about the flat background. An arbitrary number of interacting bosonic and fermionic particles are considered. A systematic approach to the generation of gravitational waves in the quantum domain is presented that recovers known classical limits in terms of the quadrupole radiation formula and backreaction dissipation. Classical gravitational emission and absorption relations are quantized into their quantum field theoretical counterparts in terms of the corresponding operators and quantum ensemble averages. Certain arising consistency issues related to factor ordering have been addressed and resolved. Using the theoretical formulation established here with numerical simulations in the quantum regime, we discuss potential new effects including decoherence through the spontaneous emission of gravitons and collectively amplified radiation of gravitational waves by correlated quantum particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.